Aufbau von faserbasierten Interferometern für die Quantenkryptografie

- Gehäuse, Phasenstabilisierung, Fasereinbau -

Masterarbeit im Studiengang Elektrotechnik und Informationstechnik Vertiefungsrichtung Photonik

an der

in Kooperation mit der

vorgelegt von Björnstjerne Zindler

geboren am 13. November 1966 in Görlitz

eingereicht am 21. November 2011

Erstgutachter: Herr Professor Dr. A. Richter Zweitgutachter: Herr Professor Dr. O. Benson

Meiner Mutter gewidmet *03. Juli 1940 +22. September 2010

Auswertung der Messung an den Interferometern der 1. Ausbaustufe

- Interferometer "1" -

• Erläuterung:

Ruhe-1:

Ausgemessen wurde das Interferometer "1" (mit dem Piezoring). Neben der Visibilität wurde auch die Transmission ausgemessen (im gesonderten Arbeitsblatt bereits ausgewertet.).

• Durchgeführte Messungen:

Eingangssignal 260m 240m Spannung (V) 220m 200m 180m 160m 140m 50 100 300 350 400 450 Ó 150 200 250 Zeit (s)

Durengerunt te triesbungent

Abbild 1: Messignal am Detektoreingang für das Interferometer "1" ohne Ineinflussnahme auf dieses. Das Interferometer arbeitet somit im "Leerlauf". Quelle: Eigene Messung.

Abbild 2: Messignal am Detektoreingang für das Interferometer "1" nach einer thermischen Anregung. Dargestellt ist die Rückkehr in den Leerlaufzustand. Quelle: Eigene Messung.

Stoss- 2:

Abbild 3: Messignal am Detektoreingang für das Interferometer "1" nach einer thermischen Anregung. Dargestellt ist die Rückkehr in den Leerlaufzustand. Quelle: Eigene Messung.

Abbild 5: Messignal am Detektoreingang für das Interferometer "1" nach einer thermischen Anregung. Dargestellt ist die Rückkehr in den Leerlaufzustand. Quelle: Eigene Messung.

Teilstoss-1:

Abbild 6: Messignal am Detektoreingang für das Interferometer ",1" nach einer thermischen Anregung. Dargestellt ist das zeitliche Intervall ",t = 0 + 15s". Quelle: Eigene Messung.

Teilstoss- 2:

Abbild 7: Messignal am Detektoreingang für das Interferometer "1" nach einer thermischen Anregung. Dargestellt ist das zeitliche Intervall "t = 100 + 8s". Quelle: Eigene Messung.

Abbild 8: Messignal am Detektoreingang für das Interferometer "1" nach einer thermischen Anregung. Dargestellt ist das zeitliche Intervall "t = 200 + 8s". Quelle: Eigene Messung.

Teilstoss- 4:

Abbild 9: Messignal am Detektoreingang für das Interferometer "1" nach einer thermischen Anregung. Dargestellt ist das zeitliche Intervall "t = 300 + 7s". Quelle: Eigene Messung.

Teilstoss- 5:

Abbild 10: Messignal am Detektoreingang für das Interferometer "1" nach einer thermischen Anregung. Dargestellt ist das zeitliche Intervall "t = 400 + 20s". Quelle: Eigene Messung.

Spannung- 1:

Abbild 11: Messignal am Detektoreingang für das Interferometer "1" nach einer elektrischen Anregung von 10V am Piezo. Ein- und Ausschaltvorgang als " \downarrow ". Quelle: Eigene Messung.

Spannung- 2:

Abbild 12: Messignal am Detektoreingang für das Interferometer "1" nach einer elektrischen Anregung von 10V am Piezo. Ein- und Ausschaltvorgang als "↓". Quelle: Eigene Messung.

Spannung- 3:

Abbild 13: Messignal am Detektoreingang für das Interferometer "1" nach einer elektrischen Anregung von 10V am Piezo. Ein- und Ausschaltvorgang als "↓". Quelle: Eigene Messung.

Spannung- 4:

Abbild 14: Messignal am Detektoreingang für das Interferometer "1" nach einer elektrischen Anregung von 10V am Piezo. Ein- und Ausschaltvorgang als "↓". Quelle: Eigene Messung.

Spannung- 5:

Abbild 15: Messignal am Detektoreingang für das Interferometer "1" nach einer elektrischen Anregung von 10V am Piezo. Ein- und Ausschaltvorgang als " \downarrow ". Quelle: Eigene Messung.

Klopf- 1:

Abbild 16: Messignal am Detektoreingang für das Interferometer ",1" nach einer zweimaligen mechanischen Anregung von ",t = 0 + 1s" und ",t = 7 + 2s". Quelle: Eigene Messung.

#	MAX	MIN	Ø	V	Mess- zeit
Ruhe-1	0,280	0,144	0,211	0,321	450 s
Stoss-1	0,412	0,004	0,213	0,981	440 s
Stoss- 2	0,412	0,004	0,214	0,981	430s
Stoss- 3	0,420	0,004	0,215	0,981	440 s
Stoss- 4	0,416	0,004	0,214	0,981	425 s
Anstoss- 1	0,420	0,004	0,213	0,981	14,5 s
Anstoss- 2	0,252	0,176	0,214	0,178	8 s
Anstoss- 3	0,256	0,172	0,212	0,196	8 s
Anstoss- 4	0,264	0,160	0,215	0,245	7 s
Anstoss- 5	0,252	0,176	0,216	0,178	20 s

• Messwerte:

Tabelle 1: Messwerte der oben genannten durchgeführten Messungen. Quelle: Eigene Messwerte.

• Auswertung:

Aus den Messwerten kann die Visibilität des Interferometers "1" errechnet werden:

$$V = \frac{MAX_{1} + MAX_{2} + MAX_{3} + MAX_{4} - MIN_{1} - MIN_{2} - MIN_{3} - MIN_{4}}{MAX_{1} + MAX_{2} + MAX_{3} + MAX_{4} + MIN_{1} + MIN_{2} + MIN_{3} + MIN_{4}}$$

 \Rightarrow

$$V = \frac{0,412 + 0,412 + 0,420 + 0,416 - 0,004 - 0,004 - 0,004 - 0,004}{0,412 + 0,412 + 0,420 + 0,416 + 0,004 + 0,004 + 0,004 + 0,004}$$

$$\Rightarrow V = \frac{1,645}{1,676}$$

$$\Rightarrow V = 0,981$$

Die Visibilität des Interferometers "1" beträgt 0,981 bei theoretischen 1,000.

• Fehlerkorrektur:

Es wurde keine Fehlerkorrektur durchgeführt.

Auswertung der Messung an den Interferometern der **1.** Ausbaustufe

- Interferometer "2" -

Erläuterung: ٠

2 Ruhe- 1:

Ausgemessen wurde das Interferometer "2" (ohne Piezoring). Neben der Visibilität wurde auch die Transmission ausgemessen (im gesonderten Arbeitsblatt bereits ausgewertet.).

Durchgeführte Messungen:

Abbild 17: Messignal am Detektoreingang für das Interferometer "2" ohne Ineinflussnahme auf dieses. Das Interferometer arbeitet somit im "Leerlauf". Quelle: Eigene Messung.

• Messwerte:

#	MAX	MIN	Ø	V	Mess- zeit
2 Ruhe- 1	1,660	0,920	1,280	0,287	450 s
2 Ruhe- 2	1,640	0,960	1,289	0,262	450 s

Tabelle 2: Messwerte der oben genannten durchgeführten Messungen. Quelle: Eigene Messwerte.

• Auswertung:

Es wurde keine Auswertung durchgeführt.

• Fehlerkorrektur:

Es wurde keine Fehlerkorrektur durchgeführt.

Auswertung der Messung an den Interferometern der 1. Ausbaustufe

- Interferometer "1 + 2" -

• Erläuterung:

Ausgemessen wurde das Interferometer ",1" (mit dem Piezoring) und das Interferometer ",2" (ohne Piezoring) in der Time- Bin- Konfiguration ",1 + 2" und ",2 + 1".

• Durchgeführte Messungen:

Abbild 19: Messignal am Detektoreingang für das Interferometer "**1+2**" ohne Ineinflussnahme. Die Interferometer arbeitet somit im "Leerlauf". Quelle: Eigene Messung.

Abbild 20: Messignal am Detektoreingang für das Interferometer "**1+2**" ohne Ineinflussnahme. Die Interferometer arbeitet somit im "Leerlauf". Quelle: Eigene Messung.

1+2 Ruhe- 1:

1+2 Ruhe- 3:

Abbild 21: Messignal am Detektoreingang für das Interferometer "**1+2**" ohne Ineinflussnahme. Die Interferometer arbeitet somit im "Leerlauf". Quelle: Eigene Messung.

2+1 Ruhe- 1:

Abbild 22: Messignal am Detektoreingang für das Interferometer "**2+1**" ohne Ineinflussnahme. Die Interferometer arbeitet somit im "Leerlauf". Quelle: Eigene Messung.

¹⁺² Stoss- 1:

Abbild 23: Messignal am Detektoreingang für das Interferometer "1+2" nach einer thermischen Anregung. Dargestellt ist die Rückkehr in den Leerlauf. Quelle: Eigene Messung.

1+2 Stoss- 2:

Abbild 24: Messignal am Detektoreingang für das Interferometer "1+2" nach einer thermischen Anregung. Dargestellt ist die Rückkehr in den Leerlauf. Quelle: Eigene Messung.

Abbild 25: Messignal am Detektoreingang für das Interferometer "1+2" nach einer thermischen Anregung. Dargestellt ist die Rückkehr in den Leerlauf. Quelle: Eigene Messung.

Abbild 26: Messignal am Detektoreingang für das Interferometer "2+1" nach einer thermischen Anregung. Dargestellt ist die Rückkehr in den Leerlauf. Quelle: Eigene Messung

#	MAX	MIN	Ø	V	Mess- zeit
1+2 Ruhe- 1	0,396	0,104	0,222	0,584	450 s
1+2 Ruhe- 2	0,368	0,100	0,220	0,573	450 s
1+2 Ruhe- 3	0,400	0,104	0,221	0,587	450 s
2+1 Ruhe- 1	0,408	0,120	0,243	0,545	450 s
1+2 Stoss- 1	0,424	0,096	0,219	0,613	450 s
1+2 Stoss- 2	0,408	0,096	0,218	0,619	450 s
1+2 Stoss- 3	0,424	0,092	0,219	0,643	450 s
2+1 Stoss- 1	0,432	0,128	0,245	0,543	450 s

• Messwerte:

Tabelle 3: Messwerte der oben genannten durchgeführten Messungen. Quelle: Eigene Messwerte.

• Auswertung:

Aus den Messwerten kann die Visibilität des Interferometers "1" errechnet werden:

Ruhe- Messwerte:

$$V = \frac{MAX_1 + MAX_2 + MAX_3 + MAX_4 - MIN_1 - MIN_2 - MIN_3 - MIN_4}{MAX_1 + MAX_2 + MAX_3 + MAX_4 + MIN_1 + MIN_2 + MIN_3 + MIN_4}$$

$$\Rightarrow V = \frac{0,396 + 0,368 + 0,400 + 0,408 - 0,104 - 0,100 - 0,104 - 0,120}{0,396 + 0,368 + 0,400 + 0,408 + 0,104 + 0,100 + 0,104 + 0,120}$$

$$\Rightarrow V = \frac{1,144}{2,000}$$

Die Visibilität der Interferometer in Time- Bin- Konfiguration beträgt 0,572 bei theoretischen 0,500.

Stoss- Messwerte:

$$V = \frac{MAX_{1} + MAX_{2} + MAX_{3} + MAX_{4} - MIN_{1} - MIN_{2} - MIN_{3} - MIN_{4}}{MAX_{1} + MAX_{2} + MAX_{3} + MAX_{4} + MIN_{1} + MIN_{2} + MIN_{3} + MIN_{4}}$$

$$\Rightarrow \qquad V = \frac{0.424 + 0.408 + 0.424 + 0.432 - 0.096 - 0.096 - 0.092 - 0.128}{0.424 + 0.408 + 0.424 + 0.432 + 0.096 + 0.096 + 0.092 + 0.128}$$

$$\Rightarrow \qquad V = \frac{1.276}{2.100}$$

$$\Rightarrow \qquad V_{s} = 0.608$$

Die Visibilität der Interferometer in Time- Bin- Konfiguration beträgt 0,608 bei theoretischen 0,500.

• Fehlerkorrektur:

Das theoretische Verhältnis zwischen MAX- und MIN- Wert ist bei der Time-Bin- Konfiguration festgelegt. Es gilt:

$$\frac{MAX_{Theor}}{MIN_{Theor}} = 3$$

Diese Festlegung kann zur Fehlerkorrektur genutzt werden:

#	MAX	MIN	MAX/MIN
1+2 Ruhe- 1	0,396	0,104	3,808
1+2 Ruhe- 2	0,368	0,100	3,680
1+2 Ruhe- 3	0,400	0,104	3,846
2+1 Ruhe- 1	0,408	0,120	3,400
1+2 Stoss- 1	0,424	0,096	4,417
1+2 Stoss- 2	0,408	0,096	4,250
1+2 Stoss- 3	0,424	0,092	4,609
2+1 Stoss- 1	0,432	0,128	3,375

Tabelle 3: Messwerte der oben genannten durchgeführten Messungen. Quelle: Eigene Messwerte.

Ruhe- Messwerte:

	$\hat{V} = \frac{4 \cdot \frac{MAX_{Theor}}{MIN_{Theor}} \cdot V}{\frac{MAX_{1}}{MIN_{1}} + \frac{MAX_{2}}{MIN_{2}} + \frac{MAX_{3}}{MIN_{3}} + \frac{MAX_{4}}{MIN_{4}}}$
\Rightarrow	
	$\hat{V} = \frac{4 \cdot 3 \cdot 0,572}{\frac{0,396}{0,104} + \frac{0,368}{0,100} + \frac{0,400}{0,104} + \frac{0,408}{0,120}}$
\Rightarrow	
	$\hat{V} = \frac{12 \cdot 0,572}{3,808 + 3,680 + 3,846 + 3,400}$
\Rightarrow	$\hat{V} = \frac{6,864}{14,734}$
\Rightarrow	$\hat{V}_R = 0,464$

Die fehlerkorrigierte Visibilität der Interferometer in Time- Bin- Konfiguration beträgt 0,464 bei theoretischen 0,500.

Stoss- Messwerte:

$$\hat{V} = \frac{4 \cdot \frac{MAX_{Theor}}{MIN_{Theor}} \cdot V}{\frac{MAX_{1}}{MIN_{1}} + \frac{MAX_{2}}{MIN_{2}} + \frac{MAX_{3}}{MIN_{3}} + \frac{MAX_{4}}{MIN_{4}}}$$

$$\Rightarrow \qquad \hat{V} = \frac{4 \cdot 3 \cdot 0.608}{\frac{0.424}{0.096} + \frac{0.408}{0.096} + \frac{0.424}{0.092} + \frac{0.432}{0.128}}{\frac{0.422}{0.128}}$$

$$\Rightarrow \qquad \hat{V} = \frac{12 \cdot 0.608}{\frac{4.417 + 4.250 + 4.609 + 3.375}}$$

$$\Rightarrow \qquad \hat{V} = \frac{7.293}{16.651}$$

$$\Rightarrow \qquad \hat{V}_{s} = 0.438$$

Die fehlerkorrigierte Visibilität der Interferometer in Time- Bin- Konfiguration beträgt 0,438 bei theoretischen 0,500.