Aufbau von faserbasierten Interferometern für die Quantenkryptografie

- Gehäuse, Phasenstabilisierung, Fasereinbau -

Masterarbeit im Studiengang Elektrotechnik und Informationstechnik Vertiefungsrichtung Photonik

an der

in Kooperation mit der

vorgelegt von Björnstjerne Zindler

geboren am 13. November 1966 in Görlitz

eingereicht am 21. November 2011

Erstgutachter: Herr Professor Dr. A. Richter Zweitgutachter: Herr Professor Dr. O. Benson

Meiner Mutter gewidmet *03. Juli 1940 +22. September 2010

Bemessung der notwendigen Isolierungseigenschaften einer Interferometerbox

- Q_{Zul} -

• Basierend auf:

Arbeitsblatt "Wärmedynamische Betrachtungen der Interferometerbox."

• Vorbetrachtungen:

Es ist gegeben die Berechnungsgrundlage der maximalen Stabilität " $t_{\phi;Max}$ " einer nicht aktiv temperaturgeregelten Interferometerbox:

$$t_{\varphi;Max} = \frac{\Delta T_{\varphi;max}}{4} \cdot \frac{V}{\dot{Q}} \cdot \frac{\left(C_{II} \cdot R_{I} - C_{I} \cdot R_{II}\right)^{2}}{\left(C_{II} - C_{I}\right) \cdot \left(R_{I} - R_{II}\right)}$$

Mit:

$\Delta T_{\phi;Max}$	=	Die maximal zulässige Temperaturabweichung im Innern der
		Interferometerbox vom Sollwert.
V	=	Volumen der Interferometerbox
Q	=	Wärmestrom nach außen/innen, thermische Verlustleistung
CI	=	spezifische Wärmekapazität Stoff I
CII	=	spezifische Wärmekapazität Stoff II
R _I	=	Dichte Stoff I
R _{II}	=	Dichte Stoff II

Im vorliegenden Arbeitsblatt soll ein " Q_{Zul} " berechnet werden für eine Vorgabe von " $t_{\phi;Max}$ ". Dazu wird umgestellt:

$$\dot{Q}_{Zul} = \frac{\Delta T_{\varphi;\max}}{4} \cdot \frac{V}{t_{\varphi;Max}} \cdot \frac{\left(C_{II} \cdot R_{I} - C_{I} \cdot R_{II}\right)^{2}}{\left(C_{II} - C_{I}\right) \cdot \left(R_{I} - R_{II}\right)}$$

Damit ist eine Bemessung der Isolation möglich.

Stoff II = Luft:

• Beispiel:

Werte von vorliegenden Aufbauten entlehnt:

Interferometerboxvolumen: $V = 0,185 \cdot 0,260 \cdot 0,040 = 0,001924m^{3}$ Stoff I = Kupfer: $R_{I} = 8920 \frac{kg}{m^{3}} \qquad C_{I} = 381 \frac{J}{kg \cdot K}$

$$R_{II} = 1204 \frac{kg}{m^3}$$
 $C_{II} = 1005 \frac{J}{kg \cdot K}$

Geht man davon aus, dass bereits bei einer Temperaturdifferenz von " $\Delta T_{\phi;MAX} \approx 0,1K$ " es zu einer Phasenumkehr kommt (Abschnitt A.3 "Herleitungen" §5, "Teilkomplettierung einer Quantenkryptografieeinheit"), liegt die maximal erlaubte thermische Verlustleistung " Q_{Zul} " des thermisch unstabilisierten Interferometers bei:

$$\dot{Q}_{Zul} = \frac{722,78}{t_{\varphi;Max}} \left[\frac{J}{s} = W \right]$$

Die grafische Darstellung dazu:

Stabilität der Interferometerbox.

Einige	ausgewählte	Werte:
--------	-------------	--------

$t_{\phi;Max}[s]$	Q _{Zul} [J/s]	$t_{\phi;Max}[s]$	Q _{Zul} [J/s]	$t_{\phi;Max}[s]$	Q _{Zul} [J/s]
1	723	180	4,0	420	1,7
5	145	210	3,4	450	1,6
10	72	240	3,0	480	1,5
30	24	270	2,7	510	1,4
60	12	300	2,4	540	1,34
90	8	330	2,2	570	1,27
120	6	360	2,0	600	1,20
150	4,8	390	1,9	1000	0,72

Bemessung der notwendigen Isolierungseigenschaften einer Interferometerbox

- Ermittlung von D_{Min} -

• Herleitung der Oberfläche der Interferometerbox:

Die Interferometerbox besitzt ohne Isolierung die Oberfläche "A $_0$ " als festen Wert:

$$A_0 = 2 \cdot \left(H \cdot B + H \cdot T + B \cdot T \right)$$

Angenommen, auf jede Seitenfläche wird gleichmäßig eine Isolierung der Dicke "D" auf die Box aufgetragen, so ergibt sich dann eine neue Oberfläche "A":

$$A = 2 \cdot ((H+2D) \cdot (B+2D) + (H+2D) \cdot (T+2D) + (B+2D) \cdot (T+2D))$$

$$\Rightarrow$$

$$A = 2 \cdot (H \cdot B + H \cdot T + B \cdot T + 4D \cdot (H+B+T) + 12D^{2})$$

$$\Rightarrow$$

$$A = A_{0} + 2D \cdot L + 24D^{2}$$

Mit: L = Kantenlänge $,,4 \cdot (H+B+T)^{"} \text{ von },A_0^{"}$

• Ermittlung von "D_{Min}":

Mit dem Wärmestrom " Q_{Zul} " und der Oberfläche "A" ist die Wärmestromdichte " q_{Zul} " berechenbar:

 $\dot{O}_{\pi,i} = \dot{a}_{\pi,i} \cdot A$

 \Rightarrow

$$\dot{q}_{Zul} = \frac{\dot{Q}_{Zul}}{A}$$

Die Wärmestromdichte selbst kann über dem k- Wert und der Temperaturdifferenz " Δ T" zwischen Innen und Außen substituiert werden:

$$k \cdot (T_I - T_A) = \frac{Q_{Zul}}{A}$$
$$k = \frac{\dot{Q}_{Zul}}{\Delta T \cdot A}$$

 \Rightarrow

Für den Wärmedurchgangskoeffizienten "k" steht eine Berechnungsgrundlage zur Verfügung:

$$\frac{1}{\frac{1}{\alpha_{I}} + \frac{1}{\Lambda} + \frac{1}{\alpha_{A}}} = \frac{\dot{Q}_{Zul}}{\Delta T \cdot A}$$
$$\frac{1}{\Lambda} = \frac{\Delta T \cdot A}{\dot{Q}_{Zul}} - \left(\frac{1}{\alpha_{I}} + \frac{1}{\alpha_{A}}\right)$$

 \Rightarrow

 \Rightarrow

Die " $1/\alpha$ " sind bekannte Wärmeübergangswiderstände und " $1/\Lambda$ " der Wärmedurchlasswiderstand. Dieser ist wiederum substituierbar durch:

$$\frac{D}{\lambda} = \frac{\Delta T \cdot A}{\dot{Q}_{Zul}} - \left(\frac{1}{\alpha_I} + \frac{1}{\alpha_A}\right)$$
$$D = A \cdot \frac{\lambda \cdot \Delta T}{\dot{Q}_{Zul}} - \left(\frac{\lambda}{\alpha_I} + \frac{\lambda}{\alpha_A}\right)$$

Zum Schluss wird der bekannte Wert für "A" wieder eingesetzt und der sich ergebende Ausdruck in die quadratische Normalform gebracht:

$$0 = \left(A_0 + 2D \cdot L + 24D^2\right) \cdot \frac{\lambda \cdot \Delta T}{\dot{Q}_{Zul}} - \left(\frac{\lambda}{\alpha_I} + \frac{\lambda}{\alpha_A}\right) - D$$
$$0 = \frac{A_0}{24} - \left(\frac{1}{\alpha_I} + \frac{1}{\alpha_A}\right) \cdot \frac{\dot{Q}_{Zul}}{24 \cdot \Delta T} + \left(\frac{1}{12}L - \frac{\dot{Q}_{Zul}}{24 \cdot \lambda \cdot \Delta T}\right) \cdot D + D^2$$

Damit ist " D_{Min} " ermittelbar über den analytischen Lösungsansatz für Polynome 2. Ordnung:

$$D_{Min;1} = X + \sqrt{X^2 + Y}$$
 $D_{Min;2} = X - \sqrt{X^2 + Y}$

Mit:

 \Rightarrow

$$X = \frac{\dot{Q}_{Zul}}{48 \cdot \lambda \cdot \Delta T} - \frac{1}{24}L \qquad Y = \left(\frac{1}{\alpha_I} + \frac{1}{\alpha_A}\right) \cdot \frac{\dot{Q}_{Zul}}{24 \cdot \Delta T} - \frac{A_0}{24}$$

• Beispiel:

Temperaturdifferenz: $\Delta T = 50^{\circ}C - 20^{\circ}C = 30K$

Wärmeleitfähigkeit Polystyren nach DIN 4108 Teil4 (12.85) Teil4 A1 (12.89):

$$\lambda = 0.04 \frac{W}{m \cdot K}$$

Kantenlänge der Box:

 $L = 4 \cdot (0,26 + 0,185 + 0,04) = 1,94m$

Interferometerboxoberfläche:

$$A_0 = 2 \cdot (0,26 \cdot 0,185 + 0,26 \cdot 0,04 + 0,185 \cdot 0,04)$$

 \Rightarrow

 \Rightarrow

 $A_0 = 0,1318m^2$

Wärmeübergangswiderstände für unbelüftete Grenzflächen nach DIN EN ISO 6946:

$$\frac{1}{\alpha_{I}} = \frac{1}{A_{0}} \cdot \left(A_{H} \cdot 0,13 + A_{O} \cdot 0,10 + A_{U} \cdot 0,17 \right)$$

 $\frac{1}{\alpha_{I}} = \frac{1}{0.1318} \cdot \left(2 \cdot \left(0.185 \cdot 0.04 + 0.26 \cdot 0.04 \right) \cdot 0.13 + 0.185 \cdot 0.26 \cdot 0.10 + 0.185 \cdot 0.26 \cdot 0.17 \right)$ \implies

$$\frac{1}{\alpha_{L}} = 0.134 \frac{m^2 K}{W}$$

Sowie:

$$\frac{1}{\alpha_A} = 0,040 \frac{m^2 K}{W}$$

Für "X" und "Y" ergeben sich somit:

$$X = \frac{\dot{Q}_{Zul}}{48 \cdot 0,04 \cdot 30} - \frac{1,94}{24} \qquad Y = (0,134 + 0,04) \cdot \frac{\dot{Q}_{Zul}}{24 \cdot 30} - \frac{0,1318}{24}$$

$$\Rightarrow \qquad X = 0,0174 \cdot \dot{Q}_{Zul} - 0,081 \qquad Y = 0,000242 \cdot \dot{Q}_{Zul} - 0,0055$$

$$\Rightarrow \qquad D_{Min;1} = 0,0174 \cdot \dot{Q}_{Zul} - 0,081 + \sqrt{(0,0174 \cdot \dot{Q}_{Zul} - 0,081)^2 + 0,000242 \cdot \dot{Q}_{Zul} - 0,0055}$$

$$D_{Min;2} = 0,0174 \cdot \dot{Q}_{Zul} - 0,081 - \sqrt{(0,0174 \cdot \dot{Q}_{Zul} - 0,081)^2 + 0,000242 \cdot \dot{Q}_{Zul} - 0,0055}$$

Der Wer für " $D_{Min;2}$ " grafisch dargestellt " $D_{Min;1}$ " ergibt keinen praktisch realisierbaren Wert):

Abbild 2: Abhängigkeit der Isolierungsdicke "D_{Min}" in "mm" vom zulässigen Wärmestrom "Q". Negative Werte von "D" bedeuten eine aktive Kühlung der Box.

• Rückführung auf "t_{o;Max}":

Im praktischen Bereich ist die Kenntnis des Wärmestromes "Q" nicht unbedingt von primärem Interesse. Vielmehr ist die maximale Stabilität " $t_{\phi;Max}$ " versus " D_{Min} " viel aussagekräftiger. Deshalb wird "Q" substituiert:

$$\dot{Q}_{Zul} = \frac{722,78}{t_{\varphi;Max}} \left[\frac{J}{s} = W \right]$$

 \Rightarrow

$$D_{Min} = \frac{12,58}{t_{\varphi;Max}} - 0,081 - \sqrt{\left(\frac{12,58}{t_{\varphi;Max}} - 0,081\right)^2 + \frac{0,175}{t_{\varphi;Max}} - 0,0055}$$

Auch dieser mathematische Ausdruck wird grafisch dargestellt:

Abbild 3: Abhängigkeit der Isolierungsdicke "D_{Min}" in "mm" von der maximalen Stabilitätszeit der Interferometerbox in "s". Negative Werte von "D" bedeuten eine aktive Kühlung der Box.

Einige ausgewählte We	te tabellarisch	dargestellt:
-----------------------	-----------------	--------------

$t_{\phi;Max}[s]$	D _{Min} [mm]	$t_{\phi;Max}[s]$	D _{Min} [mm]	$t_{\phi;Max}[s]$	D _{Min} [mm]
0,1	-6,9	32	0,0	64	12,7
4	-6,2	36	1,2	68	15,2
8	-5,5	40	2,4	72	18,1
12	-4,7	44	3,8	76	21,7
16	-3,8	48	5,2	80	26,6
20	-3,0	52	6,8	84	32,6
24	-2,0	56	8,5	88	44,0
28	-1,0	60	10,5	89	55,7

Rot gekennzeichnet, die Zeit der Phasenstabilität ohne Dämmung der Interferometerbox und **Grün** bei 1cm Dämmung mit Polystyren (!Interferometerbox thermisch unstabilisiert!).

Bemessung der notwendigen Isolierungseigenschaften einer Interferometerbox

- Nachweis von D_{Min} -

• Nachweisgrundlage:

Da bei der Bemessung von " D_{Min} " einige Vereinfachungen angenommen wurden, ist ein Nachweis zu führen. Grundlage dieses Nachweises ist:

$$\frac{\dot{Q}}{\dot{Q}_{Zul}} \le 1$$

Ein Nachweis über " $t_{\phi;Max}$ " ist ebenfalls möglich.

• Nachweis:

Die in den oberen Abschnitten angegebenen Aufbaugrößen werden weiter genutzt. Die Interferometerbox wird mit ,,D = 1cm" Polystyren umhüllt. Erwartet wird ein Stabilitätsfenster von etwa einer Minute.

Der Wärmeübergangskoeffizient "k" wird ermittelt, dazu ist der Quotient "D/ λ " vonnöten:

$$\frac{D}{\lambda} = \frac{10 \cdot 10^{-3}}{40 \cdot 10^{-3}} = 0,25 \frac{m^2 K}{W}$$

Wobei " λ " die Wärmeleitfähigkeit nach DIN 4108 Teil4 (12.85) Teil4 A1 (12.89) für Polystyren ist.

Die Wärmeübergangswiderstände für unbelüftete Grenzflächen nach DIN EN ISO 6946:

Richtung	Oben	Horizontal	Unten	
$1/\alpha_I$	0,10	0,13	0,17	$m^2 K/W$
$1/lpha_{_A}$	0,04	0,04	0,04	$m^2 K/W$

"k" ist definiert durch:

$$k = \frac{1}{\frac{1}{\alpha_I} + \frac{D}{\lambda} + \frac{1}{\alpha_A}}$$

 \Rightarrow

Richtung	Oben	Horizontal	Unten	
k	2,56	2,38	2,17	$W/(m^2K)$

Die Wärmestromdichte "q" ist ermittelbar:

$$\dot{q} = k \cdot (T_I - T_A) = k \cdot 30 \frac{W}{m^2}$$

Richtung	Oben	Horizontal	Unten	
ġ	76,93	71,43	65,22	W/m^2

Der Wärmestrom ist definiert mit den bekannten Flächen:

$$\dot{Q} = \dot{q} \cdot A \frac{J}{s}$$

 \Rightarrow

.

Richtung	Oben	Horizontal	Unten	
А	0,0481	0,0356	0,0481	m^2
Ż	3,70	2,54	3,14	W

Die Gesamtsumme für "Q":

$$Q = 3,70 + 2,54 + 3,14 = 9,38\frac{J}{s}$$

Der Nachweis:

$$\frac{\dot{Q}}{\dot{Q}_{Zul}} = \frac{9.4}{12} \le 1$$
$$0.8 \le 1$$

 \Rightarrow

Die dazu gehörige Zeit ,, $t_{\phi;Max}$ ":

$$t_{\varphi;Max} = \frac{722,78}{\dot{Q}} = \frac{722,78}{9,38}$$
$$t_{\varphi;Max} = 77s$$

 \Rightarrow

Der Nachweis ist erfüllt!

• Zusammenfassung:

Eine Umhüllung des vorliegenden Interferometers mit 1cm Polystyren ergibt bei 80% Füllungsgrad der Box eine Phasenstabilität von etwa einer Minute.

• Nachtrag:

Aus der Berechnungsgrundlage für "D_{Min}" ist die maximal, technisch machbare Stabilität ermittelbar für vorliegende Randbedingungen (Füllungsgrad, $\Delta T_{\phi;Max}$, ...):

$$D_{Min} = 0.0174 \cdot \dot{Q}_{Zul} - 0.081 - \sqrt{(0.0174 \cdot \dot{Q}_{Zul} - 0.081)^2 + 0.000242 \cdot \dot{Q}_{Zul} - 0.0055}$$

$$\implies (0.0174 \cdot \dot{Q}_{Zul} - 0.081)^2 + 0.000242 \cdot \dot{Q}_{Zul} - 0.0055 \ge 0$$

Da die Determinante für die praktische Realisierung reelle Werte haben muss, gilt obige Beschränkung für Werte größer gleich Null:

 $(0,0174 \cdot \dot{Q}_{Grenz} - 0,081)^2 + 0,000242 \cdot \dot{Q}_{Grenz} - 0,0055 = 0$

 \Rightarrow

$$\dot{Q}_{Grenz}^2 - 8,5 \cdot \dot{Q}_{Grenz} + 3,5 = 0$$

 \Rightarrow

$$\dot{Q}_{Grenz;1} = 8,08 \frac{J}{s}$$
 $\dot{Q}_{Grenz;2} = 0,43 \frac{J}{s}$

Wobei $,,Q_{Grenz;2}$ einen gültigen Wert für $,,D_{Min;2}$ ergibt und $,,Q_{Grenz;1}$ gültige Werte für $,,t_{\phi;Max}$ und $,,D_{Grenz}$!

$$\dot{Q}_{Grenz} = 0.43 \frac{J}{s}$$

Bei folgenden Werten

$$t_{\varphi;Grenz} = \frac{722,78}{\dot{Q}_{Grenz}} = \frac{722,78}{8,08}$$

 $t_{\varphi;Grenz} = 89,5s \equiv 1\min 29s$

 \Rightarrow

Dieser Wert ist jedoch nur erreichbar mit hohen Isolationsschichtdicken:

$$D_{Grenz} = 0,0174 \cdot \dot{Q}_{Grenz} - 0,081 = 0,0174 \cdot 8,08 - 0,081$$

 \Rightarrow

 $D_{Grenz} = 0,05959m \equiv 59,6mm \equiv 6cm$

Auf jeder Seite der Box müssten 6cm Polystyren aufgetragen werden.