Aufbau von faserbasierten Interferometern für die Quantenkryptografie

- Gehäuse, Phasenstabilisierung, Fasereinbau -

Masterarbeit im Studiengang Elektrotechnik und Informationstechnik Vertiefungsrichtung Photonik

an der

in Kooperation mit der

vorgelegt von Björnstjerne Zindler

geboren am 13. November 1966 in Görlitz

eingereicht am 21. November 2011

Erstgutachter: Herr Professor Dr. A. Richter Zweitgutachter: Herr Professor Dr. O. Benson

Meiner Mutter gewidmet *03. Juli 1940 +22. September 2010

Polarisation versus Ausgangsleistung der 1550nm Lasereinheit

• Konditionen:

Die vorhandene 1500nm- Lasereinheit gekoppelt an einem Speicher- Oszilloskop mittels einer Monomode- Standardfaser SMF-28-FC-2 bei manueller Ablesung.

• Messwerte:

#	φ [°]	$U_1[V]$	$U_2[V]$	$U_3[V]$	Ø[V]	Ø _{Normiert} []	$\emptyset_{\text{Normiert}}[db]$
1	0/360	0,180	0,520	0,324	0,584	0,122	- 9,136
2	10	0,300	1,450	0,078	0,609	0,127	- 8,962
3	20	1,150	3,020	0,302	1,491	0,311	- 5,072
4	30	2,680	4,640	0,890	2,737	0,572	- 2,426
5	40	4,720	4,760	1,800	3,760	0,785	- 1,051
6	50	4,760	4,800	2,920	4,160	0,869	- 0,610
7	60	4,800	4,800	3,920	4,507	0,942	- 0,259
8	70	4,800	4,800	4,720	4,774	0,997	- 0,013
9	80	4,800	4,800	4,720	4,774	0,997	- 0,013
10	90	4,800	4,800	4,720	4,774	0,997	- 0,013
11	100	4,800	4,800	4,760	4,787	1,000	- 0,000
12	110	4,800	4,760	4,720	4,760	0,994	- 0,026
13	120	4,800	4,720	4,720	4,747	0,992	- 0,035
14	130	4,760	4,240	4,520	4,507	0,942	- 0,259
15	140	4,720	2,480	3,240	3,480	0,727	- 1,385
16	150	3,000	0,990	2,200	2,064	0,431	- 3,655
17	160	1,250	0,192	1,130	0,857	0,129	- 8,894
18	170	0,336	0,254	0,480	0,357	0,075	- 11,249
19	180	0,164	0,970	0,107	0,414	0,086	- 10,655
20	190	0,710	2,400	0,169	1,093	0,228	- 6,421
21	200	1,920	4,360	0,648	2,309	0,482	- 3,170
22	210	3,840	4,760	1,450	3,350	0,700	- 1,549
23	220	4,720	4,800	2,480	4,000	0,836	- 0,778
24	230	4,760	4,800	3,600	4,387	0,916	- 0,381
25	240	4,800	4,800	4,720	4,774	0,997	- 0,013
26	250	4,800	4,800	4,720	4,774	0,997	- 0,013
27	260	4,800	4,800	4,720	4,774	0,997	- 0,013
28	270	4,800	4,800	4,760	4,787	1,000	- 0,000
29	280	4,800	4,800	4,720	4,774	0,997	- 0,013
30	290	4,800	4,760	4,720	4,760	0,994	- 0,026
31	300	4,720	4,720	4,680	4,707	0,983	- 0,074

32	310	4,720	2,960	3,880	3,854	0,749	- 1,255
33	320	3,520	1,380	2,640	2,514	0,525	- 2,798
34	330	1,940	0,452	1,650	1,347	0,281	- 5,513
35	340	0,580	0,151	0,730	0,487	0,102	- 9,914
36	350	0,141	0,730	0,202	0,358	0,075	- 11,250
37	360/0	0,464	2,120	0,180	0,584	0,122	- 9,136

Die dazugehörigen grafischen Darstellungen:

Polarisationswinkel und normierte Ausgangsleistung.

Aus dem Versuch "Polarisation versus Visibilität" sind die dortigen Ausgangsleistungen bekannt. Diese kann man ebenfalls normieren und danach die Differenz mit den Werten aus diesem Versuch bilden:

#	φ[°]	μ[V]	$\mu_{\text{Normiert}}[]$	$\emptyset_{\text{Normiert}}[]$	$(\emptyset-\mu)_{Normiert}[]$
1	0/360	0,018	0,013	0,122	0,109
2	10	0,025	0,018	0,127	0,109
3	20	0,022	0,016	0,311	0,295
4	30	0,101	0,072	0,572	0,500
5	40	0,271	0,194	0,785	0,591
6	50	0,461	0,330	0,869	0,539
7	60	0,709	0,508	0,942	0,434
8	70	0,939	0,672	0,997	0,325
9	80	1,129	0,808	0,997	0,189
10	90	1,233	0,883	0,997	0,114
11	100	1,397	1,000	1,000	0,000
12	110	1,312	0,939	0,994	0,055
13	120	1,136	0,813	0,992	0,179
14	130	0,974	0,697	0,942	0,245
15	140	0,729	0,521	0,727	0,206
16	150	0,519	0,372	0,431	0,059
17	160	0,299	0,214	0,129	- 0,085
18	170	0,165	0,118	0,075	- 0,043
19	180	0,046	0,033	0,086	0,053
20	190	0,014	0,010	0,228	0,218
21	200	0,063	0,045	0,482	0,437
22	210	0,184	0,132	0,700	0,568
23	220	0,354	0,253	0,836	0,583
24	230	0,574	0,411	0,916	0,505
25	240	0,788	0,564	0,997	0,433
26	250	1,120	0,802	0,997	0,195
27	260	1,285	0,920	0,997	0,077
28	270	1,125	0,805	1,000	0,195
29	280	1,248	0,893	0,997	0,104
30	290	1,194	0,855	0,994	0,139
31	300	0,980	0,702	0,983	0,281
32	310	0,792	0,567	0,749	0,182
33	320	0,581	0,416	0,525	0,109
34	330	0,396	0,283	0,281	- 0,002
35	340	0,216	0,155	0,102	- 0,053
36	350	0,092	0,066	0,075	0,009
37	360/0	0,018	0,013	0,122	0,109

Grafisch dargestellt:

Die Ausgangsleistung des Interferometers ohne die Korrektur des Einflusses der 1550nm- Lasereinheit.

#	DEG°	Ø[V]	$\emptyset_{\text{Normiert}}[]$	$\mu_{\text{Normiert}}[]$	$(\emptyset-\mu)_{Normiert}[]$
1	60	0,851	0,733	0,508	0,225
2	70	1,007	0,867	0,672	0,195
3	80	1,115	0,960	0,808	0,152
4	90	1,161	1,000	0,883	0,117
5	100	1,093	0,941	1,000	- 0,059
6	110	0,998	0,860	0,939	- 0,079
7	120	0,833	0,717	0,813	- 0,096
8	130	0,649	0,559	0,697	- 0,138
9	140	0,420	0,362	0,521	- 0,159
10	240	0,872	0,777	0,564	0,213
11	250	1,030	0,918	0,802	0,116
12	260	1,122	1,000	0,920	0,080
13	270	1,090	0,971	0,805	0,166
14	280	1,072	0,955	0,893	0,062
15	290	0,902	0,804	0,855	- 0,051
16	300	0,703	0,627	0,702	- 0,075
17	310	0,497	0,443	0,567	- 0,124
18	320	0,322	0,287	0,416	- 0,129

In zwei Intervallen wurden genauere und längere Messungen vorgenommen in "Polarisation versus Visibilität – Verlängerte Messzeit":

Wieder grafisch dargestellt:

Die Ausgangsleistung des Interferometers abzüglich des Einflusses der 1550nm- Lasereinheit unter Verwendung genauerer Messungen.

• Auswertung:

Der Einbau eines Polarisators in der 1550nm- Lasereinheit bringt zwei quadrantenkompatible globale Maxima bzw. Minima hervor. Zwei lokale Maxima sind mit großer Wahrscheinlichkeit Ergebnisse der zu kurzen Messzeit im ersten Teil des Versuches.

Die weitere Nutzung des Polarisators wird empfohlen.