Aufbau von faserbasierten Interferometern für die Quantenkryptografie

- Gehäuse, Phasenstabilisierung, Fasereinbau -

Masterarbeit im Studiengang Elektrotechnik und Informationstechnik Vertiefungsrichtung Photonik

an der

in Kooperation mit der

vorgelegt von Björnstjerne Zindler

geboren am 13. November 1966 in Görlitz

eingereicht am 21. November 2011

Erstgutachter: Herr Professor Dr. A. Richter Zweitgutachter: Herr Professor Dr. O. Benson

Meiner Mutter gewidmet *03. Juli 1940 +22. September 2010

Untersuchung der Abhängigkeiten zwischen auftretender Phasen-Verschiebung und BER in der Time- Bin- Konfiguration.

- Phasenrauschen, Phasenkodierung -

• Basierend auf:

Aufbau von faserbasierten Interferometern für die Quantenkryptografie - Gehäuse, Phasenstabilisierung, Fasereinbau - A.3 - Herleitungen §5.

• Phasenrauschen:

Bekannt sind die Berechnungsgrundlagen der Phasenlage " ϕ " und der gemessenen optischen Leistung am Detektor "P" für den mittleren Peak der Time- Bin-Konfiguration:

$$P = 4 \cdot \cos^2 \frac{\varphi}{2} \qquad P = 4 \cdot \cos^2 \left[\frac{\pi}{\lambda} \cdot n \cdot \Delta L \right]$$

 \Rightarrow

Mit:

$$\Delta \varphi(\Delta T) = \frac{2\pi}{\lambda} \cdot n \cdot \left(1 + \frac{dn}{dT} \Delta T\right) \cdot \Delta L \cdot \left(1 + \alpha \cdot \Delta T\right)$$

λ	Genutzte Wellenlänge
n	Kernbrechzahl der genutzten Faser
dn/dT	Temperaturabhängigkeit von "n"
ΔT	Temperaturabweichung vom Sollwert
ΔL	Weglängenunterschied zwischen den Interferometerarmen
α	Wärmelängenänderungskoeffizient der Faser

Letzterer Ausdruck beschreibt das Phasenrauschen infolge Temperaturabweichung vom Sollwert. Es sei darauf hingewiesen, dass weitere Gründe für das Auftreten von Phasenrauschen möglich sind. Diese werden jedoch hier nicht weiter betrachtet.

Phasenkodierung nach dem BB84- Protokoll:

Alice		Bob		APD		Alice+Bob
sendet	mit	stellt ein	erwartet	misst	Raw- Key	Sifted- Key
1	0	0	1	0	1	1
1	0	$\pi/2$	0	$-\pi/2$?	
1	0	π	1	$-\pi$	0	
1	0	$3\pi/2$	0	$-3\pi/2$?	
0	$\pi/2$	0	1	$\pi/2$?	
0	$\pi/2$	$\pi/2$	0	0	1	
0	$\pi/2$	π	1	$-\pi/2$?	
0	$\pi/2$	$3\pi/2$	0	$-\pi$	0	0
1	π	0	1	π	0	
1	π	$\pi/2$	0	$\pi/2$?	
1	π	π	1	0	1	1
1	π	$3\pi/2$	0	$-\pi/2$?	
0	$3\pi/2$	0	1	$3\pi/2$?	
0	$3\pi/2$	$\pi/2$	0	π	0	0
0	$3\pi/2$	π	1	$\pi/2$?	
0	$3\pi/2$	$3\pi/2$	0	0	1	
QuBit	ϕ_A	ϕ_B	QuBit	$\Delta \phi$	QuBit	QuBit

Die Phasenkodierung wird dargestellt durch die Tabelle 2 aus oben angegebener Quelle:

Alice stellt für jedes zu übertragende QuBit eine streng definerte Phase ein $(0\pi, \pi/2, \pi, 3\pi/2)$. Bob wird jedoch gausverteilt um diese Phasen kleinere Abweichungen messen. Diese Linienverbreiterung soll hier ausschließlich auf das oben definierte Phasenrauschen begründet werden. Grafisch könnte sich dies darstellen:

Abbild 1: Linienverbreiterung infolge Phasenrauschen bei der Phasenkodierung nach dem BB84- Protokoll. **Schwarz gestrichelt**, die Entscheidungsschwelle zwischen QuBit "1" und "0".

Die Entscheidungsschwelle bestimmt den Fehler 1. Ordnung.

Tabelle 2: Implementierung des BB84- Protokolls mittels Phasen- Kodierung. [NG01] [Rie10]

"Wird ein Qubit "1" gesendet und liegt dieses oberhalb der Entscheidungsschwelle des Detektors am Detektor an, wird dieser das Qubit als "0" interpretieren."

"Wird ein Qubit "1"gesendet und liegt dieses unterhalb der Entscheidungsschwelle des Detektors am Detektor an, wird dieser das Qubit als "1" interpretieren."

Die Lage der Entscheidungsschwelle ist maßgeblich für die Ermittlung der BER.

Untersuchung der Abhängigkeiten zwischen auftretender Phasen-Verschiebung und BER in der Time- Bin- Konfiguration.

- Entscheidungsschwelle, Fehlerintegrale, BER -

• Die Entscheidungsschwelle des Detektors:

Nur eine Entscheidungsschwelle, angedeutet wie im Abbild 1, wird hier weiter betrachtet. Die QuBits sind definiert als:

$$QuBIT-"1" = \frac{4}{\Delta\varphi \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{\varphi}{\Delta\varphi}\right)^2} \qquad QuBIT-"0" = \frac{2}{\Delta\varphi \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{2\cdot\varphi-\pi}{2\cdot\Delta\varphi}\right)^2}$$

Die Entscheidungsschwelle ist jener Punkt, wo beide QuBITs gleiche Intensitäten besitzen: QuBIT-"1"=QuBIT-"0"

 \Rightarrow

 \Rightarrow

 \Rightarrow

$$2 \cdot e^{-\frac{1}{2} \left(\frac{\varphi}{\Delta \varphi}\right)^2} = e^{-\frac{1}{2} \left(\frac{2 \cdot \varphi - \pi}{2 \cdot \Delta \varphi}\right)^2}$$

$$\varphi_E = \frac{\pi}{4} + \frac{\ln 4}{\pi} \cdot \Delta \varphi^2$$

• Berechnung der Fehlerintegrale:

Die Fehlerintegrale können bestimmt werden mittels der jetzt bekannten Entscheidungsschwelle. Dabei ist TRUE das Fehlerintegral für den Fall eines fehlerfrei detektierten QuBITs und FALSE für einen Fehler 1. Ordnung.

$$TRUE = \int_{-\infty}^{\varphi_E} QuBIT - "1" \qquad FALSE = \int_{\varphi_E}^{+\infty} QuBIT - "1"$$
$$TRUE = \int_{-\infty}^{\varphi_E} \frac{4}{\Delta\varphi \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{\varphi}{\Delta\varphi}\right)^2} d\varphi \qquad FALSE = \int_{\varphi_E}^{+\infty} \frac{4}{\Delta\varphi \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{\varphi}{\Delta\varphi}\right)^2} d\varphi$$

Mit dem QuBIT "O" ist eine weitere Berechnung ebenfalls möglich. Zum Ende muss die gleiche Berechnungsgrundlage für die BER zum Ausdruck kommen.

$$TRUE = 2 + 2 \cdot erf \frac{\varphi_E}{\sqrt{2} \cdot \Delta \varphi}$$
$$FALSE = 2 - 2 \cdot erf \frac{\varphi_E}{\sqrt{2} \cdot \Delta \varphi}$$

Beide Fehlerintegrale unterscheiden sich nur durch das unterschiedliche Vorzeichen.

• Die Berechnung der BER:

Die BER wird definiert aus den Fehlerintegralen TRUE und FALSE:

$$BER = \frac{FALSE}{TRUE}$$

 \Rightarrow

$$BER = \frac{1 - erf \frac{\varphi_E}{\sqrt{2} \cdot \Delta \varphi}}{1 + erf \frac{\varphi_E}{\sqrt{2} \cdot \Delta \varphi}}$$

Damit ist die BER definiert und wird grafisch dargestellt:

Abbild 2: Die Entwicklung der BER in Abhängigkeit von " $\Delta \phi$ " für kleine " $\Delta \phi$ ".

Untersuchung der Abhängigkeiten zwischen auftretender Phasen-Verschiebung und BER in der Time- Bin- Konfiguration. - Beispiel -

• Beispiel:

Ein Beispiel mit folgenden Werten, entnommen "Aufbau von faserbasierten Interferometern für die Quantenkryptografie - Gehäuse, Phasenstabilisierung, Fasereinbau - A.3 - Herleitungen §5.".

n	=	1,5	
λ	=	1,5	[µm]
ΔL	=	0,1	[m]
α	=	$12 \cdot 10^{-6}$	[1/K]
dn/dT	=	30.10^{-6}	[1/K]

ΔΤ [Κ]	Δφ	$\phi_{\rm E}$	BER	t_{ϕ} [s]
0,001	0,0084π	$\pi/4 + 0,0000978\pi$	0,000 000 000	0,77
0,002	0,0168π	$\pi/4 + 0,0003927\pi$	0,000 000 000	1,54
0,003	0,0252π	$\pi/4 + 0,0008804\pi$	0,000 000 000	2,31
0,004	0,0336π	$\pi/4 + 0,0015651\pi$	0,000 000 000	3,08
0,005	0,0420π	$\pi/4 + 0,0024454\pi$	0,000 000 001	3,84
0,006	0,0504π	$\pi/4 + 0,0035214\pi$	0,000 000 245	4,61
0,007	0,0588π	$\pi/4 + 0,0047930\pi$	0,000 007 347	5,38
0,008	0,0672π	$\pi/4 + 0,0062603\pi$	0,000 068 539	6,15
0,009	0,0756π	$\pi/4 + 0,0079232\pi$	0,000 322 921	6,92
0,010	0,0840π	$\pi/4 + 0,0097816\pi$	0,000 992 911	7,69
0,011	0,0924π	$\pi/4 + 0.0118358\pi$	0,002 305 776	8,46
0,012	0,1008π	$\pi/4 + 0,0101606\pi$	0,004 417 240	9,23
0,013	0,1092π	$\pi/4 + 0,0119246\pi$	0,007 382 282	10,0
0,014	0,1176π	$\pi/4 + 0,0191721\pi$	0,011 166 519	10,8
0,015	0,1260π	$\pi/4 + 0,0220088\pi$	0,015 674 746	11,5
0,016	0,1344π	$\pi/4 + 0.0250411\pi$	0,020 779 703	12,3
0,017	0,1428π	$\pi/4 + 0.0282691\pi$	0,026 344 029	13,1
0,018	0,1512π	$\pi/4 + 0.0316927\pi$	0,032 234 449	13,8
0,019	0,1596π	$\pi/4 + 0.0353119\pi$	0,038 329 674	14,6
0,020	0,1680π	$\pi/4 + 0.0391268\pi$	0,044 523 957	15,4
0,021	0,1764π	$\pi/4 + 0,0431373\pi$	0,050 727 947	16,1
0,022	$0,1848\pi$	$\pi/4 + 0.0473434\pi$	0,056 868 013	16,9
0,023	0,1932π	$\pi/4 + 0.0517452\pi$	0,062 884 798	17,7

0,024	0,2016π	$\pi/4 + 0,0563426\pi$	0,068 731 471	18,5
0,025	0,2100π	$\pi/4 + 0,0611356\pi$	0,074 371 942	19,2
0,026	0,2184π	$\pi/4 + 0,0661242\pi$	0,079 779 181	20,0
0,027	0,2268π	$\pi/4 + 0,0713085\pi$	0,084 933 705	20,8
0,028	0,2352π	$\pi/4 + 0,0898222\pi$	0,089 822 247	21,6
0,029	0,2436π	$\pi/4 + 0,0822640\pi$	0,094 436 630	22,3
0,030	0,2520π	$\pi/4 + 0,0880352\pi$	0,098 772 796	23,1
0,031	0,2604π	$\pi/4 + 0,0940021\pi$	0,102 829 998	23,8
0,032	0,2688π	$\pi/4 + 0,1001645\pi$	0,106 610 132	24,6
0,033	0,2772π	$\pi/4 + 0,1065226\pi$	0,110 117 173	25,4
0,034	0,2856π	$\pi/4 + 0,1130764\pi$	0,113 356 718	26,1
0,035	0,2940π	$\pi/4 + 0,1198257\pi$	0,116 335 600	26,9
0,036	0,3024π	$\pi/4 + 0,1267707\pi$	0,119 061 585	27,7
0,037	0,3108π	$\pi/4 + 0,1339114\pi$	0,121 543 114	28,4
0,038	0,3192π	$\pi/4 + 0,1412476\pi$	0,123 789 093	29,2
0,039	0,3276π	$\pi/4 + 0,1487796\pi$	0,125 808 732	30,0
0,040	0,3360π	$\pi/4 + 0,1565071\pi$	0,127 611 402	30,8
0,041	0,3444π	$\pi/4 + 0,1644303\pi$	0,129 206 531	31,5
0,042	0,3528π	$\pi/4 + 0,1725491\pi$	0,130 603 515	32,3
0,043	0,3612π	$\pi/4 + 0,1808635\pi$	0,131 811 649	33,1
0,044	0,3696π	$\pi/4 + 0,1893758\pi$	0,132 840 072	33,8
0,045	0,3780π	$\pi/4 + 0,1980793\pi$	0,133 697 730	34,6
0,046	0,3864π	$\pi/4 + 0,2069806\pi$	0,134 393 338	35,4
0,047	0,3948π	$\pi/4 + 0,2160776\pi$	0,134 935 360	36,1
0,048	0,4032π	$\pi/4 + 0,2253702\pi$	0,135 331 992	36,9
0,049	0,4116π	$\pi/4 + 0,2348584\pi$	0,135 591 149	37,7
0,050	0,4200π	$\pi/4 + 0,2445423\pi$	0,135 720 462	38,4
0,051	0,4284π	$\pi/4 + 0,2544218\pi$	0,135 727 270	39,2
0,052	0,4368π	$\pi/4 + 0,2644969\pi$	0,135 618 624	40,0
0,053	0,4452π	$\pi/4 + 0,2747677\pi$	0,135 401 284	40,8
0,054	0,4536π	$\pi/4 + 0,2852342\pi$	0,135 081 731	41,5
0,055	0,4620π	$\pi/4 + 0,2958962\pi$	0,134 666 163	42,3
0,056	0,4704π	$\pi/4 + 0,3067539\pi$	0,134 160 505	43,1
0,057	0,4788π	$\pi/4 + 0.3178072\pi$	0,133 570 421	43,8
0,058	0,4872π	$\pi/4 + 0.3290562\pi$	0,132 901 312	44,6
0,059	0,4956π	$\pi/4 + 0.3405007\pi$	0,132 158 333	45,4
0,060	0,5040π	$\pi/4 + 0,3521409\pi$	0,131 346 399	46,1
0,061	0,5124π	$\pi/4 + 0,3639768\pi$	0,130 470 190	46,9
0,062	0,5208π	$\pi/4 + 0,3760083\pi$	0,129 534 164	47,7
0,063	0,5292π	$\pi/4 + 0,3882354\pi$	0,128 542 565	48,4

0,064	0,5376π	$\pi/4 + 0,4006581\pi$	0,127 499 428	49,2
0,065	0,5460π	$\pi/4 + 0,4132765\pi$	0,126 408 594	50,0
0,066	0,5544π	$\pi/4 + 0,4260905\pi$	0,125 273 711	50,7
0,067	0,5628π	$\pi/4 + 0,4391002\pi$	0,124 098 250	51,5
0,068	0,5712π	$\pi/4 + 0,4523055\pi$	0,122 885 503	52,3
0,069	0,5796π	$\pi/4 + 0,4657064\pi$	0,121 638 601	53,1
0,070	0,5880π	$\pi/4 + 0,4793029\pi$	0,120 360 515	53,8
0,071	0,5964π	$\pi/4 + 0,4930951\pi$	0,119 054 063	54,6
0,072	0,6048π	$\pi/4 + 0,5070829\pi$	0,117 721 921	55,4
0,073	0,6132π	$\pi/4 + 0,5212662\pi$	0,116 366 626	56,1
0,074	0,6216π	$\pi/4 + 0,5356455\pi$	0,114 990 584	56, 9
0,075	0,6300π	$\pi/4 + 0,5502202\pi$	0,113 596 075	57,7
0,076	0,6384π	$\pi/4 + 0,5649906\pi$	0,112 185 260	58,4
0,077	0,6468π	$\pi/4 + 0,5799566\pi$	0,110 760 185	59,2
0,078	0,6552π	$\pi/4 + 0,5951182\pi$	0,109 322 789	60,0
0,079	0,6636π	$\pi/4 + 0,610\overline{4755\pi}$	0,107 874 906	60,7
0,080	0,6720π	$\pi/4 + 0,6260284\pi$	0,106 418 272	61,5
0,081	0,6804π	$\pi/4 + 0,6417769\pi$	0,104 954 528	62,3
0,082	0,6888π	$\pi/4 + 0,6577210\pi$	0,103 485 226	63,1
0,083	0,6972π	$\pi/4 + 0,6738608\pi$	0,102 011 835	63,8
0,084	0,7056π	$\pi/4 + 0,6901963\pi$	0,100 535 738	64,6
0,085	0,7140π	$\pi/4 + 0,7067273\pi$	0,099 058 243	65,4
0,086	0,7224π	$\pi/4 + 0,7234540\pi$	0,097 580 586	66,1
0,087	0,7308π	$\pi/4 + 0,7403763\pi$	0,096 103 931	66,9
0,088	0,7392π	$\pi/4 + 0,7574943\pi$	0,094 629 373	67,7
0,089	0,7476π	$\pi/4 + 0,7748079\pi$	0,093 157 947	68,4
0,090	0,7560π	$\pi/4 + 0,7923171\pi$	0,091 690 624	69,2
0,091	0,7644π	$\pi/4 + 0.8100220\pi$	0,090 228 321	70,0
0,092	0,7728π	$\pi/4 + 0,8279225\pi$	0,088 771 895	70,7
0,093	0,7812π	$\pi/4 + 0,8460186\pi$	0,087 322 155	71,5
0,094	0,7896π	$\pi/4 + 0,8643104\pi$	0,085 879 859	72,3
0,095	0,7980π	$\pi/4 + 0,8827977\pi$	0,084 445 714	73,0
0,096	$0,8064\pi$	$\pi/4 + 0,9014808\pi$	0,083 020 387	73,8
0,097	0,8148π	$\pi/4 + 0,9203594\pi$	0,081 604 498	74,6
0,098	0,8232π	$\pi/4 + 0,9394338\pi$	0,080 198 627	75,4
0,099	0,8316π	$\pi/4 + 0,9587037\pi$	0,078 803 315	76,1
0,100	$0,8400\pi$	$\pi/4 + 0,9781693\pi$	0,077 419 068	76,9