Aufbau von faserbasierten Interferometern für die Quantenkryptografie

- Gehäuse, Phasenstabilisierung, Fasereinbau -

Masterarbeit im Studiengang Elektrotechnik und Informationstechnik Vertiefungsrichtung Photonik

an der

in Kooperation mit der

vorgelegt von Björnstjerne Zindler

geboren am 13. November 1966 in Görlitz

eingereicht am 21. November 2011

Erstgutachter: Herr Professor Dr. A. Richter Zweitgutachter: Herr Professor Dr. O. Benson

Meiner Mutter gewidmet *03. Juli 1940 +22. September 2010

Wärmedynamische Betrachtungen der Interferometerbox

- Die thermodynamische Trägheit der Box -

• Basierend auf:

Aufbau von faserbasierten Interferometern für die Quantenkryptografie - Gehäuse, Phasenstabilisierung, Fasereinbau - Abschnitt A.3 "Herleitungen" §5, §7 und §8.

• Grundgedanke:

Bedingt durch den Einfluss der Temperatur auf die Phasenkonstanz werden die benutzten Interferometer thermisch stabilisiert. Inhalt dieses Arbeitsblattes ist es, den Materialaufbau der Interferometerbox mathematisch so zu beschreiben, dass ein auftretender Temperaturgradient " Δ T" innerhalb der Box minimiert wird. Dies führt dazu, dass die Box thermisch träge auf Erwärmung und Abkühlung von bzw. nach außen reagiert.

Der mathematischen Einfachheit halber wird hier lediglich ein Zweistoffsystem betrachtet.

• Vorbetrachtungen:

Das Innere der thermisch stabilisierenden Box wird zukünftig aus dem noch aufzubauenden Interferometer bestehen. Es wird angenommen, dass dieses Interferometer nur aus zwei verschiedenen Stoffen zusammen gesetzt sei, beispielsweise Luft und ein zu nutzendes Metall. Diese physikalisch existenten Stoffe besitzen folgende hier relevante Eigenschaften:

Interferometervolumen	:	$V = H \cdot B \cdot T$
Stoffdichte Stoff I Stoffdichte Stoff II	:	R_I R_{II}
Stoffanteil Stoff I Stoffanteil Stoff II	:	$N_I \to (0 \cdots 1)$ $N_{II} \to (1 \cdots 0)$
Spezifische Wärmekapazität Stoff I Spezifische Wärmekapazität Stoff II	:	C_{I} C_{II}
Wärmestrom nach Außen oder Innen	:	Q

• Aufbau des Zweistoffmodells:

Für das Zweistoffmodell wird die effektive spezifische Wärmekapazität "C" ermittelt aus den Wichtungen der Stoffanteile:

 $C = C_I \cdot N_I + C_{II} \cdot N_{II}$

 \Rightarrow

$$C = C_I \cdot N_I + C_{II} \cdot (1 - N_I)$$

Für das Zweistoffsystem wird die effektive Masse "M" ermittelt aus den Wichtungen der Stoffanteile:

 $M = R_I \cdot N_I \cdot V + R_{II} \cdot N_{II} \cdot V$

 \Rightarrow

$$M = V \cdot \left(R_I \cdot N_I + R_{II} \cdot \left(1 - N_I \right) \right)$$

Die resultierende Wärmekapazität "K" des Interferometers kann nun berechnet werden:

 $K = C \cdot M$

 \Rightarrow

$$K = V \cdot (C_I \cdot N_I + C_I \cdot (1 - N_I)) \cdot (R_I \cdot N_I + R_I \cdot (1 - N_I))$$

Der Temperaturgradient zwischen Interferometer und Umwelt " ∇ T" ist definiert durch:

$$\nabla T = \frac{Q}{K}$$

Aus dem Temperaturgradienten kann die Erwärmungs- oder Abkühlzeit "t", je nach Wärmestromrichtung berechnet werden:

$$t = \frac{\Delta T}{\nabla T}$$

$$t = \frac{V \cdot \Delta T}{Q} \cdot \left(C_I \cdot N_I + C_{II} \cdot (1 - N_I)\right) \cdot \left(R_I \cdot N_I + R_{II} \cdot (1 - N_I)\right) \qquad [t] = s$$

Interferometerboxvolumen:

Beispiel: ۲

Wärmestrom:	$Q = 29W = 29\frac{J}{s}$
Temperaturgefälle:	$\Delta T = T_{I} - T_{A} = 50^{\circ}C - 20^{\circ}C = 30K$
Stoff I = Kupfer	$R_I = 8920 \frac{kg}{m^3} \qquad C_I = 381 \frac{J}{kg \cdot K}$

Stoff I = Kupfer:

$$R_I = 1204 \frac{kg}{m^3} \qquad C_I = 1005 \frac{J}{kg \cdot K}$$

 $V = 0.10 \cdot 0.42 \cdot 0.30 = 0.0126m^3$

Stoff II = Luft:

Die grafische Darstellung von "t":

Abbild 1: Abhängigkeit der angenommenen Abkühlungszeit "t" in Stunden vom Anteil des Kupfers im Interferometer.

Die Abkühl- oder Erwärmungszeit in Abhängigkeit des Kupferanteils zeigt ein deutliches Maximum um 80% an. An diesem Punkt reagiert das Interferometer wärmedynamisch besonders träge, somit ist dieser Punkt von weiteren Interesse.

Maximum der wärmedynamischen Trägheit: ۲

Kann berechnet werden über:

$$\frac{d}{dN_I}t = \frac{d}{dN_I}\frac{V\cdot\Delta T}{Q}\cdot\left(C_I\cdot N_I + C_{II}\cdot(1-N_I)\right)\cdot\left(R_I\cdot N_I + R_{II}\cdot(1-N_I)\right) = 0$$

 \Rightarrow

Björnstjerne Zindler

$$N_{I;Optimal} = \frac{1}{2} \cdot \frac{2 \cdot C_{II} \cdot R_{II} - C_{I} \cdot R_{II} - C_{II} \cdot R_{I}}{(C_{I} - C_{II}) \cdot (R_{I} - R_{II})}$$

Die dazu gehörige maximale Zeit "t_{max}":

$$t_{MAX} = \frac{1}{4} \cdot \frac{V}{Q} \cdot \frac{\Delta T \cdot (C_{II} \cdot R_{I} - C_{I} \cdot R_{II})^{2}}{(C_{II} - C_{I}) \cdot (R_{I} - R_{II})}$$

Der minimale Temperaturgradient innerhalb der Box ist aus "t_{max}" ermittelbar über:

$$\nabla T_{\min} = \frac{\Delta T}{t_{\max}}$$

 \Rightarrow

$$\nabla T_{\min} = \frac{4 \cdot Q}{V} \cdot \frac{\left(C_{II} - C_{I}\right) \cdot \left(R_{I} - R_{II}\right)}{\left(C_{II} \cdot R_{I} - C_{I} \cdot R_{II}\right)^{2}}$$

• Beispiel:

Angenommene Werte wie oben, so ergeben sich folgende Extrema:

$$N_{I;Optimal} = 0,805 \equiv 80,5\%$$

Das Interferometer reagiert besonders träge bei einem Kupferanteil von etwa 80%. Eine angenommene Abkühlung von 50°C des Inneren auf 20°C beim angesetzten Wärmestrom von "Q = 29W" beträgt dann in Stunden:

$$t_{MAX} = 13,1h$$

Der Temperaturgradient " ∇ T" besitzt bei " $N_{I;Optimal}$ " sein Minimum:

$$\nabla T_{\min} = 0,0006376 \frac{K}{s} \equiv 0,64 \frac{mK}{s}$$

Wärmedynamische Betrachtungen der Interferometerbox

- Das Stabilitätsfenster der Box -

• Basierend auf:

Aufbau von faserbasierten Interferometern für die Quantenkryptografie - Gehäuse, Phasenstabilisierung, Fasereinbau - Abschnitt A.3 "Herleitungen" §5, §7 und §8.

• Stabilitätsfenster:

Besonders der Temperaturgradient ist für die Stabilität des Interferometers wichtig. Geht man davon aus, dass bereits bei einer Temperaturdifferenz von " $\Delta T_{\phi;MAX} \approx 0,1$ K" es zu einer Phasenumkehr kommt (Abschnitt A.3 "Herleitungen" §5), liegt das maximal erreichbare Stabilitätsfenster des thermisch unstabilisierten Interferometers bei:

$$t_{\varphi;Max} = \frac{\Delta T_{\varphi;MAX}}{\nabla T_{\min}}$$

 \Rightarrow

 \Rightarrow

 \Leftarrow

$$t_{\varphi;Max} = \frac{\Delta T_{\varphi;max}}{4} \cdot \frac{V}{Q} \cdot \frac{\left(C_{II} \cdot R_{I} - C_{I} \cdot R_{II}\right)^{2}}{\left(C_{II} - C_{I}\right) \cdot \left(R_{I} - R_{II}\right)}$$

$$t_{0:Max} = 156, 8s \approx 2,6 \min$$

Abbild 1: Abhängigkeit der Stabilität ,, t_{ϕ} " in Minuten vom Anteil des Kupfers im Interferometer.

$$t_{\varphi} = \Delta T_{\varphi;\max} \cdot \frac{V}{Q} \cdot \left(C_{I} \cdot N_{I} + C_{II} \cdot (1 - N_{I})\right) \cdot \left(R_{I} \cdot N_{I} + R_{II} \cdot (1 - N_{I})\right)$$

- 5 -

Kupfer- Anteil	∇T [mK/s]	t [s]	t [min]	t [h]	tφ [s]	tφ [min]
	1000 1	150	[]	[]	0.1	[]
0	1902,1	15,8	0,3	0,00	0,1	0,00
<u> </u>	25,5	1177	19,6	0,33	3,9	0,06
2	12,9	2323	38,7	0,65	1,1	0,13
3	8,7	3455	57,6	0,96	11,5	0,19
4	6,6	4573	76,2	1,27	15,2	0,25
5	5,3	5676	94,6	1,58	18,9	0,32
6	4,4	6764	112,7	1,88	22,5	0,38
7	3,8	7838	130,6	2,18	26,1	0,44
8	3,4	8897	148,3	2,47	29,7	0,49
9	3,0	9942	165,7	2,76	33,1	0,55
10	2,7	10973	183,9	3,05	36,6	0,61
11	2,5	11989	199,8	3,33	40,0	0,67
12	2,3	12990	216,5	3,61	43,3	0,72
13	2,1	13977	232,9	3,88	46,6	0,78
14	2,0	14949	249,2	4,15	49,8	0,83
15	1,9	15907	265,1	4,42	53,0	0,88
16	1,8	16850	280,8	4,68	56,2	0,94
17	1,7	17779	296,3	4,94	59,3	0,99
18	1,6	18694	311,6	5,19	62,3	1,04
19	1,53	19594	326,6	5,44	65,3	1,09
20	1,46	20479	341,3	5,69	68,3	1,14
21	1,41	21350	355,8	5,93	71,2	1,19
22	1,35	22206	370,1	6,17	74,0	1,23
23	1,30	23048	384,1	6,40	76,8	1,28
24	1,26	23875	397,9	6,63	79,6	1,33
25	1,22	24688	411,5	6,86	82,3	1,37
26	1,18	25486	424,8	7,08	85,0	1,42
27	1,14	26270	437,8	7,30	87,6	1,46
28	1,11	27039	450,7	7,51	90,1	1,50
29	1,08	27794	463,2	7,72	92,6	1,54
30	1,05	28534	475,6	7,83	95,1	1,59
31	1,03	29260	487,7	8,13	97,5	1,63
32	1,00	29971	499,5	8,33	99,9	1,67
33	0,98	30668	511,1	8,52	102,2	1,70
34	0,96	31350	522,5	8,71	104,5	1,74
35	0.94	32018	533.6	8.89	106.7	1.78
36	0,92	32671	544,5	9,08	108,9	1,82

37	0,90	33310	555,2	9,25	111,0	1,85
38	0,88	33934	565,6	9,43	113,1	1,88
39	0,87	34543	575,7	9,60	115,1	1,92
40	0,85	35139	585,6	9,76	117,1	1,95
41	0,84	35719	595,3	9,92	119,0	1,98
42	0,83	36285	604,8	10,1	121,0	2,02
43	0,81	36837	613,9	10,2	122,8	2,05
44	0,80	37374	622,9	10,4	124,6	2,08
45	0,79	37897	631,6	10,5	126,3	2,11
46	0,78	38405	640,1	10,7	128,0	2,13
47	0,77	38898	648,3	10,8	129,7	2,16
48	0,76	39377	656,3	10,9	131,3	2,19
49	0,75	39842	664,0	11,1	132,8	2,21
50	0,744	40292	671,5	11,2	134,3	2,24
51	0,736	40728	678,8	11,3	135,8	2,26
52	0,729	41149	686,8	11,4	137,2	2,29
53	0,722	41555	692,6	11,5	138,5	2,31
54	0,715	41947	699,1	11,6	139,8	2,33
55	0,709	42325	705,4	11,7	141,1	2,35
56	0,703	42688	711,5	11,8	142,3	2,37
57	0,697	43036	717,3	11,9	143,5	2,39
58	0,692	43370	722,8	12,0	144,6	2,41
59	0,686	43690	728,2	12,1	145,6	2,43
60	0,682	43995	733,2	12,2	146,6	2,44
61	0,677	44285	738,0	12,3	147,6	2,46
62	0,673	44561	742,7	12,4	148,5	2,48
63	0,669	44823	747,0	12,45	149,4	2,49
64	0,666	45070	751,2	12,52	150,2	2,50
65	0,662	45302	755,0	15,58	151,0	2,52
66	0,659	45520	758,7	12,64	151,7	2,53
67	0,656	45724	762,1	12,70	152,4	2,54
68	0,653	45913	765,2	12,75	153,0	2,55
69	0,651	46087	768,1	12,80	153,6	2,56
70	0,649	46247	770,8	12,85	154,2	2,57
71	0,647	46392	773,2	12,89	154,6	2,58
72	0,645	46523	775,4	12,92	155,1	2,58
73	0,643	46640	777,3	12,96	155,5	2,59
74	0,642	46742	779,0	12,98	155,8	2,60
75	0,641	46829	780,5	13,01	156,1	2,60
76	0,640	46902	781,7	13,03	156,3	2,61

77	0,639	46960	782,7	13,04	156,5	2,61
78	0,6382	47004	783,4	13,05	156,7	2,61
79	0,6378	47033	783,9	13,06	156,8	2,61
80	0,63765	47048	784,1	13,07	156,8	2,61
81	0,63764	47048	784,1	13,07	156,8	2,61
82	0,6378	47034	783,9	13,07	156,8	2,61
83	0,6382	47006	783,4	13,06	156,7	2,61
84	0,639	46962	782,7	13,05	156,5	2,61
85	0,640	46905	781,7	13,03	156,3	2,61
86	0,641	46832	780,5	13,01	156,1	2,60
87	0,642	46746	779,1	12,98	155,8	2,60
88	0,643	46644	777,4	12,96	155,5	2,59
89	0,645	46529	775,5	12,92	155,1	2,58
90	0,647	46398	773,3	12,89	154,7	2,58
91	0,649	46254	770,9	12,85	154,2	2,57
92	0,651	46094	768,2	12,80	153,6	2,56
93	0,653	45921	765,3	12,76	153,1	2,55
94	0,656	45732	762,2	12,70	152,4	2,54
95	0,659	45530	758,8	12,65	151,8	2,53
96	0,662	45312	755,2	12,59	151,0	2,52
97	0,665	45080	751,3	12,52	150,3	2,50
98	0,669	44834	747,2	12,45	149,4	2,49
99	0,673	44573	742,9	12,38	148,6	2,48
100	0,677	44298	738,3	12,30	147,7	2,46

Tabelle 1: Wertetabelle für den Temperaturgradienten, der Abkühl-, Aufwärmzeit und dem Stabilitätsfenster eines thermisch unstabilisierten Interferometers in Time- Bin- Konfiguration. Beispielswerte wie oben.