Das Omega-Verfahren nach DIN 4114

Das ω -Verfahren.

Dipl.-Ing. Björnstjerne Zindler, M.Sc.

https://www.Zenithpoint.de

Erstellt: 09. Mai 2012 - Letzte Revision: 27. Januar 2023

Inhaltsverzeichnis

1	Das	Omega-Verfahren im Allgemeinen	3										
2	Das	Omega-Verfahren im Besonderen	4										
3	Beis	piel für eine Anwendung des Omega-Verfahrens											
	3.1	Bemessung	5										
	3.2	Nachweis	6										
4	Anh	ang	7										
	4.1	Anhang a: ω -Tabellen nach TGL 0-4114 (DIN 4114)	7										
	4.2	Anhang b: ω -Regressionspolynome nach TGL 0-4114 (DIN 4114)	9										
	4.3	Anhang c: Zulässige Spannungen	12										
	4.4	Anhang d: Tetmajer-Parabel oder Tetmajer-Gerade	13										
		4.4.1 Vorbetrachtungen	14										
		4.4.2 Modell 1	15										
		4.4.3 Modell 2	17										
		4.4.4 Modell 3	19										
		4.4.5 Validierung	21										
		4.4.6 Zusammenfassung	22										
		4.4.7 Modell 4	23										
	4.5	Anhang e: Historische Tetmajer- und ω -Werte	25										
	4.6	Anhang f: Tetmajer-Koeffizienten k_1 und k_2	26										

Literatur

- [fbb] fbb.fh-darmstadt.de, jetzt fbb.h-da.de. Das Omega-Verfahren.
- [Ist03] István Szabó, Einführung in die Technische Mechanik. Knicken, 8. neu bearbeitete Auflage 1975 Nachdruck 2003. ISBN 3-540-44248-0.
- [Kar] Karlheinz Kabus. Mechanik und Festigkeitslehre.
- [Kni] Knicken nach Euler-Tetmajer, das Lambda-Verfahren. Dipl.-Ing. Björnstjerne Zindler, M.Sc.
- [Staa] Stahlbau; Stabilitätsfälle (Knickung, Kippung, Beulung). DIN 4114.
- [Stab] Stahlbau; Stabilitätsfälle (Knickung, Kippung, Beulung). TGL 0-4114.

1 Das Omega-Verfahren im Allgemeinen

Das ω -Verfahren wurde von der damaligen Deutschen Reichsbahn für die eigenen Stahlbrücken aus Baustahl entwickelt und ist in der DIN 4114 festgelegt (DIN ist zurückgezogen!). Es liefert einen sehr einfachen Nachweis der Knicksicherheit.

In Abhängigkeit vom Schlankheitsgrad λ werden die Knickzahlen ω in zwei Tabellen für die Werkstoffe St37¹ und St52² dargestellt und so der Nachweis durchgeführt.

Schlankheitsgrade von

- kleiner 20 bedingen keine Notwendigkeit eines (Knick)Nachweises³,
- größer 250 sind unzulässig und der Nachweis ist a-priori negativ.

Die als ω -Zahlen genannten Knickwerte liegen zwischen 1 und 10,55 bei St37.

Der Nachweis hat folgende Form⁴:

$$\sigma_k = \omega \cdot \frac{F_k}{A} \le \sigma_{zul}$$

Der Wert von σ_{zul} entspricht der zulässigen Druckspannung für den entsprechenden Werkstoff im zugehörigen Lastfall.

Der große Vorteil des Verfahrens liegt in der Tatsache, dass der Knicknachweis auf einen einfachen Spannungsnachweis mit Druckkräften reduziert wird. In den ω -Zahlen ist eine Knicksicherheit von 1,3 bis 1,5 eingearbeitet.

Sollten keine Tafeln der ω -Zahlen zur Verfügung stehen, können für den Werkstoff St37 die ω -Zahlen näherungsweise⁵nach der folgenden Formel bestimmt werden:

$$\omega \approx 1 + \frac{\lambda}{728} + \frac{\lambda^2}{153^2} + \frac{\lambda^3}{143^3} \qquad \text{für} \qquad 20 \le \lambda \le 115$$

Und:

$$\omega \approx rac{\lambda^2}{77^2}$$
 für $115 < \lambda \le 250$

Das Verfahren wurde zwischenzeitlich durch andere und genauere Verfahren ersetzt, besitzt jedoch durch seine Anschaulichkeit noch eine gewissen Bedeutung in der Ausbildung von Ingenieuren.

 1 frühere Bezeichnung für S235JR+AR, S235JRG2, 1.0036 bis 1.0038, Fe360B, äquivalent zu St38 nach TGL 0-4114 2 frühere Bezeichnung für S355J2+N, S355J2G3, 1.0577 bzw. 1.0570, Fe510D1

³das entbindet nicht von weiteren eventuell notwendigen Nachweisen, wie Kippen, Beulen, ...

⁴Nachweis gilt für *Einteilige Druckstäbe von gleichbleibendem Querschnitt*. Neben anderen ist noch der Nachweis für *Gerade, planmäßig außermittig gedrückte Stäbe von gleichbleibendem Querschnitt* interessant. Sind die Abstände Schwerpunkt zu Biegezugrand und Schwerpunkt zu Biegedruckrand gleich $e_z = e_d$ oder gilt $e_z < e_d$, lautet der Nachweis wie folgt:

$$\sigma_k = \omega \cdot \frac{F_k}{A} + 0, 9 \cdot \frac{F_k \cdot e}{W_d} \le \sigma_{zul}$$

Wobei e die Außermittigkeit darstellt und W_d das Widerstandsmoment zur Druckseite. Bei Querschnitten, deren Schwerpunkt dem Biegedruckrand näher als dem Biegezugrand liegt $e_z > e_d$ muss **zusätzlich** nachgewiesen werden:

$$\sigma_k = \omega \cdot \frac{F_k}{A} + \frac{300 + 2 \cdot \lambda}{1000} \cdot \frac{F_k \cdot e}{W_z} \le \sigma_{zul}$$

⁵Hochgenaue Regressionspolynome im Anhang c.

[Ist03][Staa]

Omega-Verfahren I

2 Das Omega-Verfahren im Besonderen

[fbb][Staa] Omega-Verfahren II

In der Praxis ist das ω -Verfahren im Holz- und im Stahlbau zur Behandlung des Knickproblems üblich. Beim ω -Verfahren wird der Begriff der Schlankheit λ verwendet:

$$\lambda = \frac{s_k}{i}$$

hierbei ist *i* der Trägheitsradius, der sich aus $i = \sqrt{I/A}$ (*I* = Trägheitsmoment, *A* = Fläche) ergibt.

Jedem Schlankheitswert λ ist ein bestimmter ω -Wert zugeordnet, der aus Tabellen entnommen werden kann. Beim ω -Verfahren wird die Tragfähigkeit des Stabes reduzierende Wirkung des Knickens dadurch erfasst, dass die zulässige Spannung σ_{zul} durch einen Faktor ω reduziert wird. Der Spannungsnachweis kann daher durchgeführt werden über:

$$\sigma_{vorh} \le \frac{\sigma_{zul}}{\omega}$$

3 Beispiel für eine Anwendung des Omega-Verfahrens

3.1 Bemessung

Gegeben ist ein Profil folgender Form, eine Stablänge 500mm, ein Knickfall 2 nach Euler und eine Beispiel einwirkende Kraft von 120KN. Die Trägheitsmomente sind berechenbar über:

Bemessung

 $I_1 = 2 \cdot \frac{40^3 \cdot 4}{12} + \frac{8^3 \cdot (50 - 2 \cdot 4)}{12} = 44.459 \text{mm}^4 = I_{\min}$

Und:

$$I_2 = 2 \cdot \frac{40 \cdot 4^3 + 40 \cdot 4 \cdot \left(\frac{50}{2} - \frac{4}{2}\right)}{12} + \frac{8 \cdot (50 - 2 \cdot 4)^3}{12} = 50.432 \text{mm}^4 = I_{\text{max}}$$

Der dazugehörige Trägheitsradius beträgt:

$$i_{\min} = \sqrt{\frac{44.459}{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8}} = 8,23 \text{mm}$$

Für den angenommenen Knickfall 2 nach Euler (gelenkig, gelenkig) ergibt sich eine Knicklänge s_k aus der gewählten Stablänge l = 500mm von:

$$s_k = \frac{l}{1} = \frac{500}{1} = 500$$
mm

 $\lambda = \frac{s_k}{i_{\min}} = \frac{500}{8,23} = 60,75$

Die Schlankheit λ kann berechnet werden:

Der dazu gehörige
$$\omega$$
-Wert:

$$\omega \approx 1 + \frac{60,75}{728} + \frac{60,75^2}{153^2} + \frac{60,75^3}{143^3} = 1,31$$

Die zulässige Belastung F_k ist damit definiert:

$$F_k \le \frac{A}{\omega} \cdot \sigma_{zul} = \frac{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8}{1,31} \cdot 240 = 120 \text{KN}$$

Bei einer Profilbeanspruchung mit F = 120KN kommt es in diesem zu einer vorhandenen Spannung σ_{vorh} von:

$$\sigma_{vorh} = \frac{F}{A} = \frac{120.000}{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8} = 183 \frac{N}{mm^2}$$

[Kar][Staa]

3.2 Nachweis

• Knicken

Nachweise

Der Nachweis auf Knicken kann nun durchgeführt werden.

$$\sigma_{vorh} \le \frac{\sigma_{zul}}{\omega}$$

 \Rightarrow

$$183\frac{N}{mm^2} \le \frac{240}{1,31} = 183\frac{N}{mm^2}$$

Damit ist der Nachweis erfüllt. Der Knickstab ist voll ausgelastet.

• Druck

$$\sigma_{vorh} = \frac{120000}{656} = \frac{F}{A} = 183 \frac{N}{mm^2} > 160 \frac{N}{mm^2} = \sigma_{zul}$$

Nicht erfüllt!

Das Profil ist zu 14% überlastet, da laut DIN 4114 mit einer verminderten zulässigen Spannung gerechnet werden muss.⁶

 $^{^{6}}$ Für Lastfall HZ: $160 \frac{\text{N}}{\text{mm}^{2}}$. Für Lastfall H: $140 \frac{\text{N}}{\text{mm}^{2}}$

4 Anhang

4.1 Anhang a: ω -Tabellen nach TGL 0-4114 (DIN 4114)

Anhänge [Stab]

TGLs⁷ der Form 0-xyz entsprechen der DIN xyz. TGLs unterstehen keiner Beschränkung (mehr), wenn Inhalte genutzt werden.

	Tabelle 1: Knickzahlen ω für St 38												
λ	0	1	2	3	4	5	6	7	8	9	λ		
20	1,04	1,04	1,04	1,05	1,05	1,06	1,06	1,07	1,07	1,08	20		
30	1,08	1,09	1,09	1,10	1,10	1,11	1,11	1,12	1,13	1,13	30		
40	1,14	1,14	1,15	1,16	1,16	1,17	1,18	1,19	1,19	1,20	40		
50	1,21	1,22	1,23	1,23	1,24	1,25	1,26	1,27	1,28	1,29	50		
60	1,30	1,31	1,32	1,33	1,34	1,35	1,36	1,37	1,39	1,40	60		
70	1,41	1,42	1,44	1,45	1,46	1,48	1,49	1,50	1,52	1,53	70		
80	1,55	1,56	1,58	1,59	1,61	1,62	1,64	1,66	1,68	1,69	80		
90	1,71	1,73	1,74	1,76	1,78	1,80	1,82	1,84	1,86	1,88	90		
100	1,90	1,92	1,94	1,96	1,98	2,00	2,02	2,05	2,07	2,09	100		
110	2,11	2,14	2,16	2,18	2,21	2,23	2,27	2,31	2,35	2,39	110		
120	2,43	2,47	2,51	2,55	2,60	2,64	2,68	2,72	2,77	2,81	120		
130	2,85	2,90	2,94	2,99	3,03	3,08	3,12	3,17	3,22	3,26	130		
140	3,31	3,36	3,41	3,45	3,50	3,55	3,60	3,65	3,70	3,75	140		
150	3,80	3,85	3,9	3,95	4,00	4,06	4,11	4,16	4,22	4,27	150		
160	4,32	4,38	4,43	4,49	4,54	4,60	4,65	4,71	4,77	4,82	160		
170	4,88	4,94	5,00	5,05	5,11	5,17	5,23	5,29	5,35	5,41	170		
180	5,47	5,53	5,59	5,66	5,72	5,76	5,84	5,91	5,97	6,03	180		
190	6,10	6,16	6,23	6,29	6,36	6,42	6,49	6,55	6,62	6,69	190		
200	6,75	6,82	6,89	6,96	7,03	7,10	7,17	7,24	7,31	7,38	200		
210	7,45	7,52	7,59	7,66	7,73	7,81	7,88	7,95	8,03	8,10	210		
220	8,17	8,25	8,32	8,40	8,47	8,55	8,63	8,70	8,78	8,86	220		
230	8,93	9,01	9,09	9,17	9,25	9,33	9,41	9,49	9,57	9,65	230		
240	9,73	9,81	9,89	9,97	10,05	10,14	10,22	10,3	10,39	10,47	240		
250	10,55										250		

	Tabelle 1a: Knickzahlen ω für St 38 bei einteiligen Druckstäben aus Rundrohren												
λ	0	1	2	3	4	5	6	7	8	9	λ		
20	1,00	1,00	1,00	1,00	1,01	1,01	1,01	1,02	1,02	1,02	20		
30	1,03	1,03	1,04	1,04	1,04	1,05	1,05	1,05	1,06	1,06	30		
40	1,03	1,03	1,04	1,04	1,04	1,05	1,05	1,05	1,06	1,06	40		
50	1,12	1,13	1,13	1,14	1,15	1,15	1,16	1,17	1,17	1,18	50		
60	1,19	1,20	1,20	1,21	1,22	1,23	1,24	1,25	1,26	1,27	60		
70	1,28	1,29	1,30	1,31	1,32	1,33	1,34	1,35	1,36	1,37	70		
80	1,39	1,40	1,41	1,42	1,44	1,46	1,47	1,48	1,50	1,51	80		
90	1,53	1,54	1,56	1,58	1,59	1,61	1,63	1,64	1,66	1,68	90		
100	1,70	1,73	1,76	1,79	1,83	1,87	1,90	1,94	1,97	2,01	100		
110	2,05	2,08	2,12	2,16	2,20	2,23	weit	er wie ir	n Tabello	e 1	110		

⁷Die Technischen Normen, Gütevorschriften und Lieferbedingungen waren von 1955 bis 1990 in der DDR verbindliche Industriestandards.

Tabelle 2a: Knickzahlen ω für St 52												
λ	0	1	2	3	4	5	6	7	8	9	λ	
20	1,06	1,06	1,07	1,07	1,08	1,08	1,09	1,09	1,10	1,11	20	
30	1,11	1,12	1,12	1,13	1,14	1,15	1,15	1,16	1,17	1,18	30	
40	1,19	1,19	1,20	1,21	1,22	1,23	1,24	1,25	1,26	1,27	40	
50	1,28	1,30	1,31	1,32	1,33	1,35	1,36	1,37	1,39	1,40	50	
60	1,41	1,43	1,44	1,46	1,48	1,49	1,51	1,53	1,54	1,56	60	
70	1,58	1,60	1,62	1,64	1,66	1,68	1,70	1,72	1,74	1,77	70	
80	1,79	1,81	1,83	1,86	1,88	1,91	1,93	1,95	1,98	2,01	80	
90	2,05	2,10	2,14	2,19	2,24	2,28	2,33	2,38	2,43	2,48	90	
100	2,53	2,58	2,64	2,69	2,74	2,79	2,85	2,90	2,95	3,01	100	
110	3,05	3,12	3,18	3,23	3,29	3,35	3,41	3,47	3,53	3,59	110	
120	3,65	3,71	3,77	3,83	3,89	3,96	4,02	4,09	4,15	4,22	120	
130	4,28	4,35	4,41	4,48	4,55	4,62	4,69	4,75	4,82	4,89	130	
140	4,96	5,04	5,11	5,18	5,25	5,33	5,40	5,47	5,55	5,62	140	
150	5,70	5,78	5,85	5,93	6,01	6,09	6,16	6,24	6,32	6,40	150	
160	6,48	6,57	6,65	6,73	6,81	6,90	6,98	7,06	7,15	7,23	160	
170	7,32	7,41	7,49	7,58	7,67	7,76	7,85	7,94	8,03	8,12	170	
180	8,21	8,30	8,39	8,48	8,58	8,67	8,76	8,86	8,95	9,05	180	
190	9,14	9,24	9,34	9,44	9,53	9,63	9,73	9,83	9,93	10,03	190	
200	10,13	10,23	10,34	10,44	10,54	10,65	10,75	10,85	10,96	11,06	200	
210	11,17	11,28	11,38	11,49	11,60	11,71	11,82	11,93	12,04	12,15	210	
220	12,26	12,37	12,48	12,60	12,71	12,82	12,94	13,05	13,17	13,28	220	
230	13,40	13,52	13,63	13,75	13,87	13,99	14,11	14,23	14,35	14,47	230	
240	14,59	14,71	14,83	14,96	15,08	15,20	15,33	15,45	15,58	15,71	240	
250	15,83										250	

	Tabelle 2a: Knickzahlen ω für St 52 bei einteiligen Druckstäben aus Rundrohren												
λ	0	1	2	3	4	5	6	7	8	9	λ		
20	1,02	1,02	1,02	1,03	1,03	1,03	1,04	1,04	1,05	1,05	20		
30	1,05	1,06	1,06	1,07	1,07	1,08	1,08	1,09	1,10	1,10	30		
40	1,11	1,11	1,12	1,13	1,13	1,14	1,15	1,16	1,16	1,17	40		
50	1,18	1,19	1,20	1,21	1,22	1,23	1,24	1,25	1,26	1,27	50		
60	1,28	1,30	1,31	1,32	1,33	1,35	1,36	1,38	1,39	1,41	60		
70	1,42	1,44	1,46	1,47	1,49	1,51	1,53	1,55	1,57	1,59	70		
80	1,62	1,66	1,71	1,75	1,79	1,83	1,88	1,92	1,97	2,01	80		
90	2,05				weiter v	vie in Ta	belle 2				90		

Grundsätzlich gilt: Bei Zwischenwerten ist die nächsthöhere ω -Knickzahl zu nutzen.

4.2 Anhang b: ω-Regressionspolynome nach TGL 0-4114 (DIN 4114)

• ω_1 : Tabelle 1 - St38 all gemein für $20 \le \lambda \le 115$

$$\omega_1 = 0,99 + \frac{\lambda}{731,08} + \frac{\lambda^2}{155,86^2} + \frac{\lambda^3}{141,23^3}$$

• $\,\omega_2$: Tabelle 1 - St
38 allgemein für $115 < \lambda \leq 250$

 \Rightarrow

 \Rightarrow

 \Rightarrow

 $\omega_2 = \frac{\lambda^2}{76,95^2}$

• ω_3 : Tabelle 1a - St
38 einteilige Druckstäbe aus Rundrohren für $20 \leq \lambda \leq 115$

$$\omega_3 = 1,19 - \frac{\lambda}{51,09} + \frac{\lambda^2}{39,4^2} - \frac{\lambda^3}{51,06^3} + \frac{\lambda^4}{73,02^4}$$

• ω_4 : Tabelle 1a - St
38 einteilige Druckstäbe aus Rundrohren für $115 < \lambda \leq 250$

$$\omega_4 = \frac{\lambda^2}{76,95^2}$$

• $\,\omega_{5}$: Tabelle 2 - St
52 all
gemein für $20 \leq \lambda \leq 90$

$$\omega_5 = 1 + \frac{\lambda}{475,67} + \frac{\lambda^2}{177,24^2} + \frac{\lambda^3}{107,03^3}$$

 \Rightarrow

• ω_6 : Tabelle 2 - St
52 allgemein für $90 < \lambda \leq 250$

$$\omega_6 = \frac{\lambda^2}{62,85^2}$$

 \Rightarrow

• ω_7 : Tabelle 2a - St
38 einteilige Druckstäbe aus Rundrohren für $20 \leq \lambda \leq 90$

$$\omega_7 = 1,38 - \frac{\lambda}{25,3} + \frac{\lambda^2}{26,01^2} - \frac{\lambda^3}{36,18^3} + \frac{\lambda^4}{54,09^4}$$

Ersatzweise:

$$\omega_7 \approx 0,68 + \frac{\lambda}{41,08} - \frac{\lambda^2}{44,01^2} + \frac{\lambda^3}{60,23^3}$$

• ω_8 : Tabelle 2a - einteilige Druckstäbe aus Rundrohren für $90 < \lambda \leq 250$

$$\omega_8 = \frac{\lambda^2}{62,85^2}$$

4.3 Anhang c: Zulässige Spannungen

Zulässige Spannunger	n für Bau	teile in I	N/mm ²	DIN 18800 Teil 1								
Spannungsart	Spannungsart					Werkstoff und Lastfall						
		St	37	St	52	StE	460	StE	690			
		Н	HZ	Н	HZ	Н	HZ	Н	HZ			
Druck und Biege- druck für Stabilitäts- nachweis nach DIN 4114 Teil 1 und 2	$_{zul}\sigma_D$	140	160	210	240	275	310	410	460			
Druck und Bie- gedruck, Zug und Biegezug Vergleichs- spannung	$_{zul}\sigma$	160	180	240	270	310	350	410	460			
Schub	$_{zul} au$	92	104	139	156	180	200	240	270			

Allgemeine Kennwerte									
Stahl	Streckgrenze β_S N/mm ²	Elastizitätsmodul E N/mm ²	Schubmodul G N/mm ²						
Baustahl St 37	240*								
Baustahl St 52	360**	210.000	01.000						
Stahlguss GS 52	260	210.000	81.000						
Vergütungsstahl C 35 N	280								
Grauguss GG 15	-	100.000	38.000						
 * Für Materialdicken ≤100mm. ** Für Materialdicken ≤60mm. Für größere Dicken sind entsprechende Festlegungen zu treffen. 									

4.4 Anhang d: Tetmajer-Parabel oder Tetmajer-Gerade

Folgend eine kleine Betrachtung zu einer Besonderheit des ω -Verfahrens. Aufbauend auf den Verformungstheorien nach Euler und Tetmajer besitzt die Funktion eine hebbare Unstetigkeit im Übergang von Euler nach Tetmajer. Jedoch unterscheiden sich die Stellen, an der das zu beobachten ist.

Baustahl	λ_P	λ_F	Theorie	λ_F / λ_P
St 37	104	61	Tetmajer	0,587
St 37	115	-	Omega ^{lin}	-
St 37	115	68	Omega ^{par}	0,591
St 52	85	47	Tetmajer	0,553
St 52	90	-	Omega ^{lin}	-
St 52	97	54	Omega ^{par}	0,557

Vergleich der Tetmajer-Parabel nach Modell 3b und der Tetmajer-Gerade

Die Frage ist nun, warum diese Unterschiede? Es liegt die Vermutung nahe, dass die Tetmajer-Gerade auch eine gewisse Zeit lang im Stahlbau als Parabel betrachtet und erst später zur Geraden degradiert wurde. Auf Tetmajer aufbauende Theorien könnten demnach in dieser Zwischenzeit im Kern eine Parabel verwendet haben. Die Abweichungen scheinen sehr gering zu sein im Ergebnis, so dass man später die Theorien nicht noch einmal korrigiert hat. Solch eine Theorie könnte das Omega-Verfahren durchaus sein.

Im weiteren Verlauf soll versucht werden durch **modellbasiertes** Reverse-Engineering auf mathematischer Basis⁸ eine Parabel nachzubauen, die es ermöglicht, die Abweichungen zu erklären.

Die folgenden Zeilen sind daher lediglich Betrachtungen von akademischen Interesse. Es wird von der Vorlage der DIN in einigen Teilen der Vereinfachung wegen abgewichen.

⁸Der Begriff Reverse-Mathematics ist bereits anderweitig belegt.

4.4.1 Vorbetrachtungen

Benötigt werden die Arbeitsgleichungen.

Die Arbeitsgleichung lineares Polynom (Tetmajer-Gerade):

$$\sigma_L = a - b \cdot \lambda$$

Die Arbeitsgleichung quadratisches Polynom (Tetmajer-Parabel):

$$\sigma_P = \underbrace{(a_{\lambda=0} + K)}_{a} + b \cdot \lambda - c \cdot \lambda^2$$

Dabei ist K ein Term, welcher bei einer späteren Integration vonnöten ist. Der Wechsel der Koeffizientenvorzeichen ergibt sich aus den Notwendigkeiten der Regression.

Die Euler-Parabel ist gegeben.

$$\sigma_E = \frac{\pi^2}{\lambda^2} \cdot E$$

Damit ist K definiert.

$$\sigma_P = \sigma_E$$
 an der Stelle $\lambda = \lambda_P$

 \Rightarrow

$$K_P = \frac{\pi^2}{\lambda_P^2} \cdot E + c \cdot \lambda_P^2 - b \cdot \lambda_P - a_{\lambda=0}$$

Sowie:

$$\sigma_P = \sigma_L$$
 an der Stelle $\lambda = \lambda_F$

 \Rightarrow

 $K_F = c \cdot \lambda_F^2 - 2 \cdot b \cdot \lambda_F$

Für das Unstetigkeitsmodell gilt:

$$K_U = 0$$

Gesucht ist das Integral:

$$\int_{\lambda_F}^{\lambda_P} \left(\sigma_L - \sigma_P\right) \cdot d\lambda = \int_{\lambda_F}^{\lambda_P} \left(c \cdot \lambda^2 - 2 \cdot b \cdot \lambda - K\right) \cdot d\lambda$$

Der Minimalwert des Integrals ist gesucht in Abhängigkeit des Koeffizienten c und des Terms K.

$$\int_{\lambda_F}^{\lambda_P} \left(\sigma_L - \sigma_P \right) \cdot d\lambda = 0$$

Das Ergebnisse ist in den einzelnen Modellabschnitten dediziert dargestellt.

4.4.2 Modell 1 - Keine hebbaren Unstetigkeiten.

Soll die Parabel im Grafen so eingefügt sein, dass sie keine hebbaren Unstetigkeiten mehr aufweist, dann muss hier gelten:

$$K = 0$$

Sowie aus der Funktionsanalysis⁹ für die einzelnen Koeffizienten:

$$a = \sigma_F - \frac{\lambda_F^2}{\lambda_P^3} \cdot L$$
 $b = 2 \cdot \frac{\lambda_F}{\lambda_P^3} \cdot L$ $c = \frac{1}{\lambda_P^3} \cdot L$

Mit:

$$L = \pi^2 \cdot \frac{E}{\lambda_P - \lambda_F}$$

Für den Baustahl St 37 somit:

• Modell 1a:

$$\lambda_F = 61 \qquad \qquad \lambda_P = 104$$

$$\Rightarrow$$

$$L = \pi^2 \cdot \frac{210.000}{104 - 61} = 48.200$$

 \Rightarrow

$$a = 240 - \frac{61^2}{104^3} \cdot L = 80,56$$
 $b = 2 \cdot \frac{61}{104^3} \cdot L = 5,23$ $c = \frac{1}{104^3} \cdot L = 0,043$

$$\sigma = 80,56+5,23\cdot\lambda - 0,043\cdot\lambda^2$$

 \Rightarrow

Eine Lösung bedeutet nicht, dass sich die Euler- und Tetmajer-Funktion berühren müssen. Dazu würde es ein Freiheitsgrad mehr benötigen mit dem Term $d \cdot \lambda^3$. Das ist einsichtig, denn rein mathematisch gesehen ist die Aufgabe auch dann erfüllt, indem man die Unstetigkeit durch z.B. eine Sprungstelle ersetzt. Das ist hier der Fall.

⁹Parabelmaxima im Punkt $P_F(\lambda_F;\sigma_F)$ und gleicher Anstieg im Punkt $P_P(\lambda_P;\sigma_P)$

• Modell 1b:

$$\lambda_F = 61$$
 $\lambda_P = 115$

Eine berechtigte Frage ist es, inwiefern sich diese Sprungstelle verändert, wenn man die Werte für λ_F und λ_P aus dem Omega-Verfahren nutzt.

$$L = \pi^{2} \cdot \frac{210.000}{115 - 61} = 38.382$$

$$\Rightarrow$$

$$a = 240 - \frac{61^{2}}{115^{3}} \cdot L = 146, 1 \qquad b = 2 \cdot \frac{61}{115^{3}} \cdot L = 3, 1 \qquad c = \frac{1}{115^{3}} \cdot L = 0,025$$

$$\Rightarrow$$

$$\sigma = 146, 1 + 3, 1 \cdot \lambda - 0,025 \cdot \lambda^{2}$$

Die Forderung der aufhebbaren Unstetigkeiten scheint nicht zielführend.

4.4.3 Modell 2 - Festhalten der Parabel im Punkt $P_F(\lambda_F; \sigma_F)$ und Optimierung auf minimaler Fläche zwischen Tetmajer-Parabel und -Gerade.

Mit:

$$K = (c \cdot \lambda_F - 2 \cdot b) \cdot \lambda_F$$

Der erste Koeffizient a wird von der Tetmajer-Geraden an der Stelle $\lambda = 0^{10}$ abgelesen. Damit ergibt sich dann mit $a = a_{\lambda=0} + K$:

$$a = a_{\lambda=0} - \frac{\lambda_F + 2 \cdot \lambda_P}{2 \cdot \lambda_F + \lambda_P} \cdot \lambda_F \cdot L \qquad \qquad b = L \qquad \qquad c = \frac{3}{2 \cdot \lambda_F + \lambda_P} \cdot L$$

Mit:

$$L = \frac{a_{\lambda=0} - \sigma_F}{\lambda_F}$$

Für den Baustahl St 37¹¹ somit:

• Modell 2a:

$$\lambda_F = 61$$
 $\lambda_P = 104$
 $L = \frac{310 - 240}{61} = 1,15$

 \Rightarrow

 \Rightarrow

$$\sigma = 226, 5 + 1, 15 \cdot \lambda - 0, 015 \cdot \lambda^2$$

 10 Inhomogenität der Tetmajer-Geraden $^{11}a_{\lambda=0}=310$

4.4.4 Modell 3 - Festhalten der Parabel im Punkt $P_P(\lambda_P; \sigma_P)$ und Optimierung auf minimaler Fläche zwischen Tetmajer-Parabel und -Gerade.

Damit ist:

$$K = c \cdot \lambda_P^2 - b \cdot \lambda_P - a_{\lambda=0} + \left(\frac{\pi}{\lambda_P}\right)^2 \cdot E$$

Der erste Koeffizient a wird von der Tetmajer-Geraden an der Stelle $\lambda = 0$ abgelesen. Damit ergibt sich dann mit $a = a_0 + K$:

$$a = (c \cdot \lambda_P - b) \cdot \lambda_P + \left(\frac{\pi}{\lambda_P}\right)^2 \cdot E \qquad b = \frac{a_{\lambda=0} - \sigma_F}{\lambda_F} \qquad c = \frac{3}{\lambda_P^2} \cdot \frac{\pi^2 \cdot E - \sigma_F \cdot \lambda_P^2}{\lambda_F^2 + \lambda_F \cdot \lambda_P - 2 \cdot \lambda_P^2}$$

Für den Baustahl St 37 somit:

• Modell 3a:

$$\lambda_F = 61 \qquad \qquad \lambda_P = 104$$

 \Rightarrow

$$a = (0,01255 \cdot 104 - 1,15) \cdot 104 + \left(\frac{\pi}{104}\right)^2 \cdot 210000 = 207,7$$
$$b = \frac{310 - 240}{61} = 1,15$$

$$c = \frac{3}{104^2} \cdot \frac{\pi^2 \cdot 210000 - 240 \cdot 104^2}{61^2 + 61 \cdot 104 - 2 \cdot 104^2} = 0,01255$$

 \Rightarrow

$$\sigma = 207, 7 + 1, 15 \cdot \lambda - 0, 0126 \cdot \lambda^2$$

• Modell 3b:

 $\lambda_F = 61$ $\lambda_P = 115$

 \Rightarrow

$$a = (0,0159 \cdot 115 - 1,15) \cdot 115 + \left(\frac{\pi}{115}\right)^2 \cdot 210000 = 235,02$$

$$= 310 - 240$$

$$b = \frac{310 - 240}{61} = 1,15$$
$$c = \frac{3}{1152} \cdot \frac{\pi^2 \cdot 210000 - 240 \cdot 115^2}{612 + 61 - 115 - 2 - 115^2} = 0,0159$$

$$c = \frac{3}{115^2} \cdot \frac{\pi^2 \cdot 210000 - 240 \cdot 115^2}{61^2 + 61 \cdot 115 - 2 \cdot 115^2} = 0,015$$

 \Rightarrow

$$\sigma = 235, 02 + 1, 15 \cdot \lambda - 0, 0159 \cdot \lambda^2$$

4.4.5 Validierung

Die Validierung wird durch das Prüfen der Ergebnisse für den Fall c = 0 realisiert. Es müssen nichttriviale, widerspruchsfreie Lösungen erscheinen. Grenzwertbetrachtungen werden nicht durchgeführt, diese Ergebnisse werden verworfen aus Erfordernissen der Praxis.

Die genannten Forderungen erfüllt nur das Modell 3b. Dort ergibt sich dann für den Koeffizienten c:

$$\pi^2 \cdot E - \sigma_F \cdot \lambda_P^2 = 0$$

 \Rightarrow

$$\lambda_P = \pi \cdot \sqrt{\frac{E}{\sigma_F}}$$

Die Tetmajer-Gerade gibt eine Definition vor, wo gilt:

$$\lambda_P^T \approx \pi \cdot \sqrt{\frac{1,25 \cdot E}{\sigma_F^T}}$$

Damit ist der Sicherheitskoeffizient γ des Omega-Verfahrens definiert:

$$\lambda_P^{\omega} = \pi \cdot \sqrt{\frac{\gamma \cdot E}{\sigma_F^{\omega}}}$$

Den Wert für σ_F^{ω} kann man über eine genaue Betrachtung des Koeffizienten a ermitteln.

$$a = \left(\frac{\pi}{\lambda_P}\right)^2 \cdot E - b \cdot \lambda_P + c \cdot \lambda_P^2$$

Der Koeffizient *a* stellt selbst eine Abbildung $\lambda \to \sigma$ dar mit der Einheit [Nmm⁻²]. An der Stelle λ_P ergibt sich der konstante Materialwert σ_F^{ω} .

$$a = \sigma_F^\omega = 235,02$$

 \Rightarrow

$$\gamma = \frac{\lambda_P^{\omega 2} \cdot \sigma_F^{\omega}}{\pi^2 \cdot E}$$

 \Rightarrow

$$\gamma = \frac{115^2 \cdot 235, 02}{\pi^2 \cdot 210.000} = 1, 5 \equiv \frac{360}{240} = \frac{\sigma_M}{\sigma_F}$$

Das Ergebnis der Modellierung aus 3b:

$$\sigma = 235,02 + 1,15 \cdot \lambda - 0,0159 \cdot \lambda^2$$

 \Rightarrow

$$\sigma = 235,02 \cdot (1+0,0049 \cdot \lambda - 0,0000677 \cdot \lambda^2) = \sigma_0 \cdot (1+k_1 \cdot \lambda - k_2 \cdot \lambda^2)$$

Im Vergleich zur allgemein genutzten Tetmajer-Geraden.

$$\sigma = 310 + 1, 14 \cdot \lambda$$

 \Rightarrow

$$\sigma = 310 \cdot (1+0,00368 \cdot \lambda) = \sigma_0 \cdot (1+k_1 \cdot \lambda)$$

Dabei ist $k_2 \cdot \lambda^2$ ein nichtlinearer Anteil aus der Werkstoffeigenschaft "Zähigkeit". Dabei gilt, je größer k_2 desto spröder der Werkstoff.

4.4.6 Zusammenfassung

Die Nutzung der Tetmajer-Parabel ist bei zähen Werkstoffen nicht notwendig, da er nur sehr kleine Beiträge leistet. Mit dem Weglassen des Terms $c \cdot \lambda^2$ oder $k_2 \cdot \lambda^2$ ändern sich jedoch zwangsläufig die anderen Koeffizienten, was dazu führt, dass sich die λ -Intervallgrenzen leicht verschieben. Das führt zu unterschiedlichen Angaben in der Fachliteratur, je nachdem, welches Modell genutzt wurde.

Für den Stahl St 52 ergeben sich analog folgende Werte.

$$\sigma = 450 - 1,915 \cdot \lambda = 450 \cdot (1 + 0,00426 \cdot \lambda)$$

Sowie:

$$\sigma = 360,03 + 1,945 \cdot \lambda - 0,346 \cdot \lambda^2 = 360,03 \cdot (1 + 0,0054 \cdot \lambda - 0,000961 \cdot \lambda^2)$$

Mit:

4.4.7 Modell 4 - Finales Modell

Abschließend das finale Modell, erzeugt aus den vorangegangen gewonnenen Erkenntnissen. Dabei wird die Forderung der minimalen Abweichung von der Tetmajer-Geraden abgelöst durch einen bekannten Fixpunkt.

Mit dem Fixpunkt

$$\lambda_F = \begin{cases} 61 & \text{für St 37} \\ 47 & \text{für St 52} \end{cases}$$

der Nebenbedingung

$$\lambda_F \cdot c = b$$

und der Arbeitsgleichung

$$\sigma = a + b \cdot \lambda - c \cdot \lambda^2 = a \cdot \left(1 + k_1 \cdot \lambda - k_2 \cdot \lambda^2\right) \quad \text{mit} \quad k_1 = \frac{b}{a} \quad \text{und} \quad k_2 = \frac{c}{a}$$

ergibt sich

$$a = \sigma_F$$
$$b = \frac{2}{\lambda_P^3} \cdot \left(2\pi \cdot E - \sigma_F \cdot \lambda_P^2\right)$$
$$c = \frac{1}{\lambda_P^4} \cdot \left(3\pi \cdot E - \sigma_F \cdot \lambda_P^2\right)$$

wobei für λ_P folgende Gleichung zu lösen ist:

$$\lambda_P^3 - \frac{\lambda_F}{2} \cdot \lambda_P^2 - \frac{2}{\sigma_F} \cdot \pi^2 \cdot E \cdot \lambda_P + \frac{3}{2} \cdot \frac{\lambda_F}{\sigma_F} \cdot \pi^2 \cdot E = 0$$

$$\Rightarrow \qquad \lambda_P = \begin{cases} 119,656 \rightarrow 120 \text{ für St } 37 \\ 98,548 \rightarrow 99 \text{ für St } 52 \end{cases}$$

$$\Rightarrow \qquad a = 240 \quad \text{für St } 37 \text{ und } a = 360 \quad \text{für St } 52 \\ b = 0,8278 \quad \text{für St } 37 \text{ und } b = 1,356 \quad \text{für St } 52 \\ c = 0,0136 \quad \text{für St } 37 \text{ und } c = 0,0289 \quad \text{für St } 52 \\ k_1 = 0,00345 \quad \text{für St } 37 \text{ und } k_1 = 0,00377 \quad \text{für St } 52 \\ k_2 = 0,0000565 \quad \text{für St } 37 \text{ und } k_2 = 0,0000803 \quad \text{für St } 52 \end{cases}$$

Die Nebenbedingung ist als Kontrolle der Ergebnisse b und c nutzbar. Außerdem, eine nichttriviale Lösung dieser ist:

$$\frac{\lambda_P}{\lambda_F} \approx 2$$

Damit ist eine Abschätzung der relevanten Lösung obig angegebenen kubischen Polynoms möglich.

Für die Herleitungen b und c und Lösungen von λ_P steht ein Maple-Worksheet-Classic[©] auf der Website von [Kni] zur Verfügung.

Die grafischen Darstellungen sind auf der nächsten Seite folgend.

4 Anhang

4.5 Anhang e: Historische Tetmajer- und ω -Werte

[Ist03]

Material	a $[\text{kg} \cdot \text{cm}^{-2}]$	$\mathbf{b} \left[\mathrm{kg} \cdot \mathrm{cm}^{-2} \right]$	Gültigkeitsbereich
Gusseisen	7760	120	$0 \le \lambda \le 80$
St 37	2400	0	$0 \le \lambda \le 60$
St 37	2890	8,175	$60 < \lambda \leq 100$
St 48	3120	0	$0 \le \lambda \le 60$
St 48	4690	26,175	$60 < \lambda \le 100$
St 52	3600	0	$0 \le \lambda \le 60$
St 52	5890	38,175	$60 < \lambda \le 100$
Niedriglegierter Stahl	4700	23,05	$0 \leq \lambda \leq 86$
Nadelholz	300	2,00	$0 \le \lambda \le 100$

Tetmajer-Koeffizienten

λ	Gusseisen	St 37	St 48	St 52	Stahlbeton	Nadelholz
0	1,00	1,00	1,00	1,00	1,00	1,00
10	1,01	1,02	1,02	1,02	1,00	1,07
20	1,05	1,04	1,05	1,06	1,00	1,15
30	1,11	1,08	1,09	1,11	1,00	1,25
40	1,22	1,14	1,16	1,19	1,00	1,36
50	1,39	1,21	1,24	1,28	1,00	1,50
60	1,67	1,30	1,35	1,41	-	1,67
70	2,21	1,41	1,50	1,58	1,08	1,87
80	3,50	1,55	1,70	1,79	-	2,14
90	4,43	1,71	1,90	2,05	1,40	2,50
100	4,45	1,90	2,30	2,53	1,60	3,00
110	-	2,11	2,60	3,06	-	3,73
120	-	2,43	3,15	3,65	2,28	4,55
130	-	2,85	3,75	4,28	-	5,48
140	-	3,31	4,30	4,96	3,00	6,51
150	-	3,80	5,10	5,70	-	7,61

 ω -Werte

4.6 Anhang f: Tetmajer-Koeffizienten k_1 und k_2

Werkstoff	λ_{MIN}	$\sigma_0 \left[\mathrm{Nmm}^{-2} \right]$	k_1	k_2
Weicher Stahl	105	310	0,00368	0,00000
Mittelharter Stahl	89	335	0,00185	0,00000
Nickelstahl	86	470	0,00490	0,00000
Grauguss	80	776	0,01546	0,00007
Kiefernholz	100	293	0,00662	0,00000

Tetmajer-Koeffizienten k_1, k_2

 $\operatorname{IAT}_E\!\! X \, 2_{\operatorname{\mathcal{E}}}$