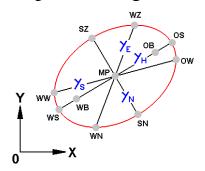
Elliptische Regression



Achsen und Winkel

Dipl.- Ing. Björnstjerne Zindler, M.Sc.

www.Zenithpoint.de

Erstellt: 21. Juni 2014 - Letzte Revision: 7. Januar 2024

Inhaltsverzeichnis

1	Die 1	Elliptisc	che Regression – Achsen und Winkel	3
	1.1	Einleit	ung	3
	1.2		tung der Achsen	
		1.2.1	Die Hauptachse y_H – Punkte WS und OS	4
		1.2.2	Die Hauptachse y_H – Punkte WB und OB	
		1.2.3	Die Hauptachse y_H – Punkt MP und Anstieg a	6
		1.2.4	Die Nebenachse y_N – Punkte SZ und SN	7
		1.2.5	Die Scheitelachse y_S – Punkte OW und WW	8
		1.2.6	Die Extremaachse y_E – Punkte WZ und WN	10
	1.3	Herleit	tung der Schnittwinkel	12
		1.3.1	Der Winkel α zwischen der Abszisse und den Achsen $y_H; y_N; y_S$ und y_E	12
		1.3.2	Der Winkel β zwischen den Achsen $y_H; y_N; y_S$ und y_E	13
		1.3.3	Der Zusammenhang zwischen Korrelationskoeffizient ρ_{XY} und Winkel β .	14
2	Ein 1	Beispiel	– Achsen und Winkel	16

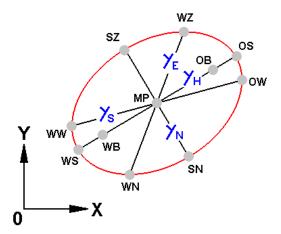
Literatur

[001] Keine für vorliegenden Text.

1 Die Elliptische Regression – Achsen und Winkel

1.1 Einleitung

Einleitung



Im Teil "Elliptische Regression von Datenpunkten" wurde die Durchführung einer Regression be- [001]ff schrieben mit dem Ergebnis der mathematischen Darstellung einer Ellipse.

Im weiteren Verlauf werden die Achsen der Ellipse beschrieben. Dabei wird definiert:

- Die Hauptachse der Ellipse y_H
- Die Nebenachse der Ellipse y_N
- Die Scheitelachse der Ellipse y_S
- Die Extremaachse der Ellipse y_E

Drei Darstellungsformen der Achsfunktionen sind angegeben:

- Die Anstiegsdarstellung (der Anstieg a der Hauptachse als Basis der Beschreibung)
- Die Koeffizientendarstellung (die Koeffizienten A und B der Ellipse als Basis)
- Die goniometrische Darstellung (der Kippwinkel φ der Ellipse als Basis)

So kann als vorangehendes Beispiel die Hauptachse in drei funktionalen Zusammenhängen erscheinen.

$$y_H = a \cdot x_H + b = \tan \varphi \cdot x_H + b = \frac{B}{A - e^2} \cdot x_H + b$$

Zwecks weiterer Begriffsbestimmungen und zum Verständnis im Verlauf siehe zuerst ¹ und ².

¹Dipl.- Ing. Björnstjerne Zindler, M.Sc. "Elliptische Regression von Datenpunkten"

²Dipl.- Ing. Björnstjerne Zindler, M.Sc. "Elliptische Regression – Punkte"

1.2 Herleitung der Achsen

1.2.1 Die Hauptachse y_H – Punkte WS und OS

Punktdefinitionen:

$$x_{WS} = x_{MP} - e \cdot f \cdot \sqrt{\frac{A}{e^2 \cdot f^2 + (B - A \cdot a)^2}}$$

$$y_{WS} = a \cdot x_{WS} + b$$

Sowie:

Hauptachse

$$x_{OS} = x_{MP} + e \cdot f \cdot \sqrt{\frac{A}{e^2 \cdot f^2 + (B - A \cdot a)^2}}$$
 $y_{OS} = a \cdot x_{OS} + b$

Zweipunktgleichung:

$$\frac{y_H - y_{WS}}{x_H - x_{WS}} = \frac{y_{OS} - y_{WS}}{x_{OS} - x_{WS}}$$
$$y_H = \frac{(y_{OS} - y_{WS}) \cdot (x_H - x_{WS}) + y_{WS} \cdot (x_{OS} - x_{WS})}{x_{OS} - x_{WS}}$$

 \Rightarrow

Substituieren von y_{WS} und y_{OS} und anschließendes Umstellen.

$$y_H = a \cdot x_H + b$$

Was der allgemeinen Definition der Hauptachse entspricht.

1.2.2 Die Hauptachse y_H – Punkte WB und OB

Hauptachse

Punktdefinitionen:

$$x_{WB} = x_{MP} - \varepsilon_L \cdot \cos \varphi$$
 $y_{WB} = y_{MP} - \varepsilon_L \cdot \sin \varphi$

Sowie:

$$x_{OB} = x_{MP} + \varepsilon_L \cdot \cos \varphi$$
 $y_{OB} = y_{MP} + \varepsilon_L \cdot \sin \varphi$

Zweipunktgleichung:

$$\frac{y_H - y_{WB}}{x_H - x_{WB}} = \frac{y_{OB} - y_{WB}}{x_{OB} - x_{WB}}$$

 \Rightarrow

$$y_{H} = \frac{(y_{OB} - y_{WB}) \cdot (x_{H} - x_{WB}) + y_{WB} \cdot (x_{OB} - x_{WB})}{x_{OB} - x_{WB}}$$

Substituieren von $y_{WB}; y_{OB}$ und $x_{WB}; x_{OB}$ sowie anschließendes Umstellen.

$$y_H = \frac{\sin \varphi}{\cos \varphi} \cdot (x_H - x_{WB}) + y_{WB}$$

Substituieren von $\sin \varphi$ und $\cos \varphi$ sowie anschließendes Umstellen.

$$\sin^2 \varphi = \frac{a^2}{1+a^2} \qquad \qquad \cos^2 \varphi = \frac{1}{1+a^2}$$

 \Rightarrow

$$y_H = a \cdot x_H - a \cdot x_{WB} + y_{WB}$$

Eine Nebenbedingung für WB wird genutzt.

$$y_{WB} = a \cdot x_{WB} + b$$

 \Rightarrow

$$y_H = a \cdot x_H + b$$

Was der allgemeinen Definition der Hauptachse entspricht.

Hauptachse

1.2.3 Die Hauptachse y_H – Punkt MP und Anstieg a

Gegeben ist der Anstieg a und der Mittelpunkt der Ellipse mit den Koordinaten:

$$x_{MP} = (d-b) \cdot \sin \varphi \cdot \cos \varphi$$
 $y_{MP} = (a^2 \cdot d + b) \cdot \cos^2 \varphi$

Die Punktrichtungsform wird genutzt.

$$\frac{y_H - y_{MP}}{x_H - x_{MP}} = a$$

 \Rightarrow

$$y_H = a \cdot (x_H - x_{MP}) + y_{MP}$$

Substituieren von y_{MP} und x_{MP} sowie anschließendes Umstellen. (Die Nebenbedingung $y_{MP}=a\cdot x_{MP}+b$ kann auch genutzt werden)

$$y_H = a \cdot x_H - a \cdot d \cdot \sin \varphi \cdot \cos \varphi + a \cdot b \cdot \sin \varphi \cdot \cos \varphi + a^2 \cdot d \cdot \cos^2 \varphi + b \cdot \cos^2 \varphi$$

Substituieren von $\sin\varphi$ und $\cos\varphi$ sowie anschließendes Umstellen.

$$\sin^2 \varphi = \frac{a^2}{1+a^2} \qquad \qquad \cos^2 \varphi = \frac{1}{1+a^2}$$

 \Rightarrow

$$y_H = a \cdot x_H + b$$

Was der allgemeinen Definition der Hauptachse entspricht.

1.2.4 Die Nebenachse y_N – Punkte SZ und SN

Nebenachse

Punktdefinitionen:

$$y_{SN} = y_{MP} - e \cdot \cos \varphi$$
 $x_{SN} = x_{MP} + e \cdot \sin \varphi$

Sowie:

$$y_{SZ} = y_{MP} + e \cdot \cos \varphi$$
 $x_{SZ} = x_{MP} - e \cdot \sin \varphi$

Zweipunktgleichung:

$$\frac{y_N - y_{SN}}{x_N - x_{SN}} = \frac{y_{SN} - y_{SZ}}{x_{SN} - x_{SZ}}$$

 \Rightarrow

$$y_N = \frac{(y_{SN} - y_{SZ}) \cdot (x_N - x_{SN}) + y_{SN} \cdot (x_{SN} - x_{SZ})}{x_{SN} - x_{SZ}}$$

Substituieren von y_{SZ} in und y_{SN} in der Klammer sowie anschließendes Umstellen.

$$y_N = y_{SN} - 2 \cdot e \cdot \cos \varphi \cdot \frac{x_N - x_{SN}}{x_{SN} - x_{SZ}}$$

Substituieren von x_{SZ} in und x_{SN} im Nenner sowie anschließendes Umstellen.

$$y_N = y_{SN} - \frac{\cos \varphi}{\sin \varphi} \cdot (x_N - x_{SN})$$

Substituieren von $\sin \varphi$ und $\cos \varphi$ sowie anschließendes Umstellen.

$$\sin^2 \varphi = \frac{a^2}{1+a^2} \qquad \qquad \cos^2 \varphi = \frac{1}{1+a^2}$$

 \Rightarrow

$$y_N = y_{SN} - \frac{1}{a} \cdot (x_N - x_{SN})$$

Eine Nebenbedingung für SN wird genutzt.

$$y_{SN} = -\frac{1}{a} \cdot x_{SN} + d$$

 \Rightarrow

$$y_N = -\frac{1}{a} \cdot x_N + d$$

Eine Nebenbedingung für a wird genutzt.

$$a \cdot c = -1$$

 \Rightarrow

$$y_N = c \cdot x_N + d$$

Was der allgemeinen Definition der Nebenachse entspricht.

Scheitelachse

1.2.5 Die Scheitelachse y_S – Punkte OW und WW

Punktdefinitionen:

$$x_{OW} = x_{MP} + \sqrt{A} y_{OW} = y_{MP} + \frac{B}{\sqrt{A}}$$

Sowie:

$$x_{WW} = x_{MP} - \sqrt{A} \qquad y_{WW} = y_{MP} - \frac{B}{\sqrt{A}}$$

Zweipunktgleichung:

$$\frac{y_S - y_{OW}}{x_S - x_{OW}} = \frac{y_{WW} - y_{OW}}{x_{WW} - x_{OW}}$$

 \Rightarrow

$$y_S = \frac{(y_{WW} - y_{OW}) \cdot (x_S - x_{OW}) + y_{OW} \cdot (x_{WW} - x_{OW})}{x_{WW} - x_{OW}}$$

Substituieren von y_{WW} in und y_{OW} sowie anschließendes Umstellen.

$$y_S = 2 \cdot \frac{-B}{\sqrt{A}} \cdot \frac{x_S - x_{OW}}{x_{WW} - x_{OW}} + y_{MP} + \frac{B}{\sqrt{A}}$$

Substituieren von x_{WW} in und x_{OW} im Nenner sowie anschließendes Umstellen.

$$y_S = \frac{B}{A} \cdot (x_S - x_{OW}) + y_{MP} + \frac{B}{\sqrt{A}}$$

Substituieren von x_{OW} sowie anschließendes Umstellen.

$$y_S = \frac{B}{A} \cdot x_S - \frac{B}{A} \cdot x_{MP} + y_{MP}$$

Eine Nebenbedingung für MP wird genutzt.

$$y_{MP} = a \cdot x_{MP} + b$$

 \Rightarrow

$$y_S = \frac{B}{A} \cdot x_S + \left(a - \frac{B}{A}\right) \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$\frac{B}{A} = a \cdot \frac{f^2 - e^2}{e^2 \cdot a^2 + f^2}$$

Lässt sich y_S leicht vereinfachen.

$$y_S = \frac{B}{A} \cdot x_S + \frac{e^2 \cdot a}{A} \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$\frac{B}{A} = \frac{(f^2 - e^2) \cdot \sin \varphi \cdot \cos \varphi}{e^2 \cdot \sin^2 \varphi + f^2 \cdot \cos^2 \varphi}$$

 \Rightarrow

$$y_S = (f^2 - e^2) \cdot \frac{\sin \varphi \cdot \cos \varphi}{e^2 \cdot \sin^2 \varphi + f^2 \cdot \cos^2 \varphi} \cdot x_S + \frac{e^2 \cdot a}{A} \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$A = e^2 \cdot \sin^2 \varphi + f^2 \cdot \cos^2 \varphi$$

 \Rightarrow

$$y_S = (f^2 - e^2) \cdot \frac{\sin \varphi \cdot \cos \varphi}{e^2 \cdot \sin^2 \varphi + f^2 \cdot \cos^2 \varphi} \cdot x_S + \frac{e^2 \cdot a}{e^2 \cdot \sin^2 \varphi + f^2 \cdot \cos^2 \varphi} \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$a = \tan \varphi$$

 \Rightarrow

$$y_S = \left(f^2 - e^2\right) \cdot \frac{\sin\varphi \cdot \cos\varphi}{e^2 \cdot \sin^2\varphi + f^2 \cdot \cos^2\varphi} \cdot x_S + e^2 \cdot \frac{\tan\varphi}{e^2 \cdot \sin^2\varphi + f^2 \cdot \cos^2\varphi} \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$\tan \varphi = a$$

 \Rightarrow

$$y_S = \frac{f^2 - e^2}{e^2 \cdot a^2 + f^2} \cdot a \cdot x_S + \frac{e^2}{e^2 \cdot a^2 + f^2} \cdot a \cdot (1 + a^2) \cdot x_{MP} + b$$

Eine Kontrolle von y_S ist möglich über die Tatsache, dass auf y_S der Mittelpunkt $(x_{MP}; y_{MP})$ der Ellipse liegt, daher:

$$y_{MP} = \frac{B}{A} \cdot x_{MP} + \left(a - \frac{B}{A}\right) \cdot x_{MP} + b$$

 \Rightarrow

$$y_{MP} = a \cdot x_{MP} + b$$

Was der geforderten Nebenbedingung entspricht.

Mit der Berechnungsgrundlage der linearen Exzentrizität ε_L ist eine weitere Vereinfachung möglich. Da vorangegangen per Definition f>e sowie f>1 [PIX] und e>1 [PIX] gilt, ist f^2-e^2 substituierbar:

$$\varepsilon_L^2 = f^2 - e^2$$

 \Rightarrow

$$y_S = \frac{\varepsilon_L^2 \cdot \sin \varphi \cdot \cos \varphi}{e^2 \cdot \sin^2 \varphi + f^2 \cdot \cos^2 \varphi} \cdot x_S + \frac{e^2 \cdot \tan \varphi}{e^2 \cdot \sin^2 \varphi + f^2 \cdot \cos^2 \varphi} \cdot x_{MP} + b$$

 \Rightarrow

$$y_S = \varepsilon_L^2 \cdot \frac{a}{e^2 \cdot a^2 + f^2} \cdot x_S + \frac{e^2 \cdot a \cdot (1 + a^2)}{e^2 \cdot a^2 + f^2} \cdot x_{MP} + b$$

Extremaachse

1.2.6 Die Extremaachse y_E – Punkte WZ und WN

Punktdefinitionen:

$$x_{WZ} = x_{MP} + B \cdot \sqrt{\frac{A}{B^2 + f^2 \cdot e^2}} \qquad y_{WZ} = y_{MP} + \sqrt{\frac{B^2 + f^2 \cdot e^2}{A}}$$

Sowie:

$$x_{WN} = x_{MP} - B \cdot \sqrt{\frac{A}{B^2 + f^2 \cdot e^2}}$$
 $y_{WN} = y_{MP} - \sqrt{\frac{B^2 + f^2 \cdot e^2}{A}}$

Zweipunktgleichung:

$$\frac{y_E - y_W Z}{x_E - x_W Z} = \frac{y_{WN} - y_{WZ}}{x_{WN} - x_{WZ}}$$

 \Rightarrow

$$y_E = \frac{(y_{WN} - y_{WZ}) \cdot (x_E - x_{WZ}) + y_{WZ} \cdot (x_{WN} - x_{WZ})}{x_{WN} - x_{WZ}}$$

Substituieren von y_{WN} in und y_{WZ} sowie anschließendes Umstellen.

$$y_E = -2\sqrt{\frac{B^2 + f^2 \cdot e^2}{A}} \cdot \frac{x_E - x_{WZ}}{x_{WN} - x_{WZ}} + y_{MP} + \sqrt{\frac{B^2 + f^2 \cdot e^2}{A}}$$

Substituieren von x_{WN} in und x_{WZ} im Nenner sowie anschließendes Umstellen.

$$y_E = \frac{B^2 + f^2 \cdot e^2}{A \cdot B} \cdot (x_E - x_{WZ}) + y_{MP} + \sqrt{\frac{B^2 + f^2 \cdot e^2}{A}}$$

Substituieren von x_{WZ} sowie anschließendes Umstellen.

$$y_E = \frac{B^2 + f^2 \cdot e^2}{A \cdot B} \cdot x_E - \frac{B^2 + f^2 \cdot e^2}{A \cdot B} \cdot x_{MP} + y_{MP}$$

Eine Nebenbedingung für MP wird genutzt.

$$y_{MP} = a \cdot x_{MP} + b$$

 \Rightarrow

$$y_E = \frac{B^2 + f^2 \cdot e^2}{A \cdot B} \cdot x_E + \left(a - \frac{B^2 + f^2 \cdot e^2}{A \cdot B}\right) \cdot x_{MP} + b$$

Der Koeffizient wird gesplittet:

$$y_E = \frac{B^2 + f^2 \cdot e^2}{A \cdot B} \cdot x_E + \left(a - \frac{B}{A} - \frac{f^2 \cdot e^2}{A \cdot B}\right) \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$\frac{B}{A} = a \cdot \frac{f^2 - e^2}{e^2 \cdot a^2 + f^2}$$

 \Rightarrow

$$y_E = \frac{B^2 + f^2 \cdot e^2}{A \cdot B} \cdot x_E + a \cdot e^2 \cdot \left(\frac{1 + a^2}{e^2 \cdot a^2 + f^2} - \frac{f^2}{a \cdot A \cdot B}\right) \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$\frac{1}{A} = \frac{1+a^2}{e^2 \cdot a^2 + f^2}$$

 \Rightarrow

$$y_E = \frac{B^2 + f^2 \cdot e^2}{A \cdot B} \cdot x_E + e^2 \cdot \frac{a \cdot B - f^2}{A \cdot B} \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$\frac{B^2 + f^2 \cdot e^2}{A \cdot B} = \frac{f^2 \cdot \sin^2 \varphi + e^2 \cdot \cos^2 \varphi}{(f^2 - e^2) \cdot \sin \varphi \cdot \cos \varphi}$$

 \Rightarrow

$$y_E = \frac{f^2 \cdot \sin^2 \varphi + e^2 \cdot \cos^2 \varphi}{(f^2 - e^2) \cdot \sin \varphi \cdot \cos \varphi} \cdot x_E + e^2 \cdot \frac{a \cdot B - f^2}{A \cdot B} \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$\frac{a \cdot B - f^2}{A \cdot B} = \frac{-1}{(f^2 - e^2) \cdot \sin \varphi \cdot \cos \varphi}$$

 \Rightarrow

$$y_E = \frac{f^2 \cdot \sin^2 \varphi + e^2 \cdot \cos^2 \varphi}{(f^2 - e^2) \cdot \sin \varphi \cdot \cos \varphi} \cdot x_E - \frac{e^2}{(f^2 - e^2) \cdot \sin \varphi \cdot \cos \varphi} \cdot x_{MP} + b$$

Mit der Nebenbedingung:

$$\tan \varphi = a$$

 \Rightarrow

$$y_E = \frac{f^2 \cdot a^2 + e^2}{f^2 - e^2} \cdot \frac{1}{a} \cdot x_E - \frac{e^2}{f^2 - e^2} \cdot \frac{1 + a^2}{a} \cdot x_{MP} + b$$

Eine Kontrolle von y_E ist möglich über die Tatsache, dass auf y_E der Mittelpunkt $(x_{MP}; y_{MP})$ der Ellipse liegt, daher:

$$y_{MP} = \frac{B^2 + f^2 \cdot e^2}{A \cdot B} \cdot x_{MP} + \left(a - \frac{B^2 + f^2 \cdot e^2}{A \cdot B}\right) \cdot x_{MP} + b$$

 \Rightarrow

$$y_{MP} = a \cdot x_{MP} + b$$

Was der geforderten Nebenbedingung entspricht.

Mit der Berechnungsgrundlage der linearen Exzentrizität ε_L ist eine weitere Vereinfachung möglich. Da per Definition f>e sowie f>1 [PIX] und e>1 [PIX] gilt, ist f^2-e^2 substituierbar:

$$\varepsilon_L^2 = f^2 - e^2$$

 \Rightarrow

$$y_E = \frac{f^2 \cdot \sin^2 \varphi + e^2 \cdot \cos^2 \varphi}{\varepsilon_L^2 \cdot \sin \varphi \cdot \cos \varphi} \cdot x_E - \frac{e^2}{\varepsilon_L^2 \cdot \sin \varphi \cdot \cos \varphi} \cdot x_{MP} + b$$

 \Rightarrow

$$y_E = \frac{f^2 \cdot a^2 + e^2}{\varepsilon_L^2 \cdot a} \cdot x_E - \frac{e^2 \cdot (1 + a^2)}{\varepsilon_L^2 \cdot a} \cdot x_{MP} + b$$

1.3 Herleitung der Schnittwinkel

1.3.1 Der Winkel α zwischen der Abszisse und den Achsen $y_H; y_N; y_S$ und y_E

Erfolgt mit den betreffenden Anstieg m nach der Berechnungsgrundlage:

 $\tan\alpha=m$

 \Rightarrow

Winkel α

	ун	y_N	y_S	y_E
Darstellung	$\tan \alpha =$	$\tan \alpha =$	$\tan \alpha =$	$\tan \alpha =$
Koeffizienten-	$\frac{B}{A-e^2}$	$\frac{e^2 - A}{B}$	$\frac{B}{A}$	$\frac{B^2 + f^2 \cdot e^2}{A \cdot B}$
Anstiegs-	a	$-\frac{1}{a}$	$\frac{f^2 - e^2}{e^2 \cdot a^2 + f^2} \cdot a$	$\frac{f^2 \cdot a^2 + e^2}{f^2 - e^2} \cdot \frac{1}{a}$
Goniometrische	an arphi	$-\cot \varphi$	$\frac{\left(f^2 - e^2\right) \cdot \sin \varphi \cdot \cos \varphi}{e^2 \cdot \sin^2 \varphi + f^2 \cdot \cos^2 \varphi}$	$\frac{f^2 \cdot \sin^2 \varphi + e^2 \cdot \cos^2 \varphi}{(f^2 - e^2) \cdot \sin \varphi \cdot \cos \varphi}$

1.3.2 Der Winkel β zwischen den Achsen $y_H; y_N; y_S$ und y_E

Winkel β

Erfolgt mit den betreffenden Anstiegen m_1 und m_2 nach der Berechnungsgrundlage:

$$\tan \beta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|$$

 \Rightarrow

Rechts - Koeffizientendarstellung

	ун	y_N	y_S	y_E
	$\tan \beta =$	$\tan \beta =$	an eta =	$\tan \beta =$
y_H	0	∞	$\left \frac{B - A \cdot a}{A + B \cdot a} \right $	$\left \frac{B \cdot (B - A \cdot a) + e^2 \cdot f^2}{B \cdot (A + B \cdot a) + a \cdot e^2 \cdot f^2} \right $
y_N	∞	0	$\left \frac{A + B \cdot a}{B - A \cdot a} \right $	$\left \frac{B \cdot (A + B \cdot a) + a \cdot e^2 \cdot f^2}{B \cdot (B - A \cdot a) + e^2 \cdot f^2} \right $
y_S	$\left \frac{e^2}{f^2} \cdot \tan \varphi \right $	$\left rac{f^2}{e^2} \cdot \cot arphi ight $	0	$\left \frac{A}{B} \cdot \frac{e^2 \cdot f^2}{A^2 + B^2 + e^2 \cdot f^2} \right $
y_E	$\left \frac{e^2}{f^2} \cdot \cot \varphi \right $	$\left rac{f^2}{e^2} \cdot an arphi ight $	$\left \frac{e^2 \cdot f^2}{e^4 - f^4} \cdot \sin^{-1} \varphi \cdot \cos^{-1} \varphi \right $	0

Links - Goniometrische Darstellung

Koeffizient ρ

1.3.3 Der Zusammenhang zwischen Korrelationskoeffizient ρ_{XY} und Winkel β

In "Elliptische Regression von Datenpunkten" wurde der lineare Korrelationskoeffizient ρ_{XY} definiert. Mit dessen Hilfe ist der Schnittwinkel β ebenfalls beschreibbar, so gilt:

$$\rho_{XY}^2 = a^2 \cdot \frac{f^2}{e^2}$$

$$\Rightarrow \frac{f^2}{e^2} = \rho_{XY}^2 \cdot \cot^2 \varphi \qquad \leftrightarrow \qquad \frac{e^2}{f^2} = \frac{\tan^2 \varphi}{\rho_{XY}^2}$$

 \Rightarrow

	ун	y_N	y_S
	an eta =	an eta =	$\tan \beta =$
y_S	$\rho_{XY}^{-2} \cdot \left \tan^3 \varphi \right $	$ \rho_{XY}^{+2} \cdot \left \cot^3 \varphi \right $	-
y_E	$ \rho_{XY}^{-2} \tan \varphi $	$ ho_{XY}^{+2} \cdot \!\cot arphi $	$\rho_{XY}^{+2} \cdot \left \frac{\sin \varphi \cdot \cos \varphi}{\sin^4 \varphi - \rho_{XY}^{+4} \cdot \cos^4 \varphi} \right $

 \Rightarrow

	ун	y_N	y_S
	$ ho_{XY}^2 =$	$ ho_{XY}^2 =$	$ ho_{XY}^2 =$
y_S	$rac{f^2}{e^2} \cdot an^2 arphi$	$rac{f^2}{e^2} \cdot an^2 arphi$	-
y_E	$\frac{f^2}{e^2} \cdot \tan^2 \varphi$	$\frac{f^2}{e^2} \cdot \tan^2 \varphi$	$\frac{f^2}{e^2} \cdot \tan^2 \varphi$

Da für das Quadrat eines Korrelationskoeffizienten gilt

$$0 \leq \rho_{XY}^2 \leq 1$$

und $\rho_{XY}^2 = \frac{f^2}{e^2} \cdot \tan^2 \varphi$ für alle Fälle gegeben ist, kann definiert werden:

$$0 \le \frac{f^2}{e^2} \cdot \tan^2 \varphi \le 1$$

$$0 \le \tan^2 \varphi \le \frac{e^2}{f^2}$$

$$0 \le \tan \varphi \le \frac{e}{f} \qquad -\frac{e}{f} \le \tan \varphi \le 0$$

$$\Rightarrow \qquad \qquad 0 \le \varphi \le \arctan \frac{e}{f} \qquad \qquad \pi - \arctan \frac{e}{f} \le \varphi \le \pi$$

Damit kann man für den ersten Quadranten (und für den zweiten bei Bedarf auch) ein maximales φ_{GRENZ} definieren.

$$\varphi_{GRENZ} = \pm \arctan \frac{e}{f}$$

Bei einer strengen Einhaltung der Forderung f>e ergibt sich dann:

$$0 \le \frac{e}{f} \le 1$$

$$\Rightarrow -45^\circ \equiv -\frac{\pi}{4} = \varphi_{MIN} \le \varphi \le \varphi_{MAX} = +\frac{\pi}{4} \equiv +45^\circ$$

Für $\varphi_{Grenz}=\pm\frac{\pi}{2}\equiv\pm90^\circ$ muss f>e als Bedingung fallen gelassen werden.

Die Beschreibung der lineare Funktion von φ_{GRENZ} :

$$y_{GRENZ} = \pm \frac{e}{f} \cdot x_{GRENZ} + b$$

1	Die Elliptische Regression –	Achsen und Winkel

2 Ein Beispiel – Achsen und Winkel

Beispiel

$$a=0,5928 \qquad b=37,5079 \qquad c=-1,6869 \qquad d=1621,1455$$

$$\varphi=0,535\equiv30,65^\circ \qquad \rho_{XY}=0,868$$

$$A=126935,44 \qquad B=34486,8$$

$$e=262,22 \qquad f=383,9$$

$$x_{MP}=694,6692986$$

 \Rightarrow^3

 $y_H = 0,592 \cdot x_H + 37,507$ $y_N = -1,686 \cdot x_N + 1621,145$

 $y_S = 0,271 \cdot x_S + 260,506$

 $y_E = 2,586 \cdot x_E - 1347,679$

 \Rightarrow

	ун	y_N	y_S	y_E
Darstellung	$\tan \alpha =$	$\tan \alpha =$	$\tan \alpha =$	$\tan \alpha =$
Koeffizienten-	+0,5928	-1,6869	+0,271	+2,586
Anstiegs-	+0,5928	-1,6869	+0,271	+2,586
Goniometrische	+0,5928	-1,6869	+0,271	+2,586

 \Rightarrow

	ун	y_N	y_S	y_E
	$\tan \beta =$	$\tan \beta =$	$\tan \beta =$	an eta =
y_H	0	∞	+0,276	+0,787
y_N	∞	0	+3,615	+1,270
y_S	+0,276	+3,616	0	+1,359
y_E	+0,787	+1,270	+1,359	0

 \Rightarrow

	ун	y_N	y_S	y_E
Darstellung	$\alpha^{\circ} =$	$\alpha^{\circ} =$	$\alpha^{\circ} =$	$\alpha^{\circ} =$
Koeffizienten-	+30,66	+120,66	+15,200	+68,863
Anstiegs-	+30,66	+120,66	+15,200	+68,863
Goniometrische	+30,66	+120,66	+15,197	+68,864

³Beispiel entnommen aus: Dipl.- Ing. Björnstjerne Zindler, M.Sc. "Elliptische Regression von Datenpunkten"

 \Rightarrow

	ун	y_N	y_S	y_E
	β° =	β° =	β° =	β° =
y_H	0	+90	+15,459	+38, 203
y_N	+90	0	+74,540	+51,796
y_S	+15,456	+74,543	0	+53,663
y_E	+38,210	+51,789	+53,666	0

 \Rightarrow

	ун	y_N	y_S
	$ ho_{XY}^2 =$	$ ho_{XY}^2 =$	$ ho_{XY}^2 =$
y_S	+0,753	+0,752	-
y_E	+0,753	+0,753	+0,753

 \Rightarrow

$$\frac{e}{f} = \pm 0,683$$

 \Rightarrow

$$\varphi_{GRENZ} = \pm \arctan \frac{e}{f} = \pm 0,600 \equiv \pm 34,33^{\circ} \qquad \varphi_{VORH} = 0,535 \equiv 30,65^{\circ}$$

Und:

$$y_{GRENZ} = \pm 0,683 \cdot x_{GRENZ} + 37,5079$$