Knicken nach verschiedenen Vorschriften im Vergleich

Dipl.- Ing. Björnstjerne Zindler, M.Sc.

www.Zenithpoint.de

Erstellt: 19. Januar. 2020 – Letzte Revision: 27. Januar 2023

Inhaltsverzeichnis

1	Einl	eitung	3
2	Nacl	hweise	5
	2.1	Das Lambda- Verfahren - Druckstababsicherung nach Euler-Tetmajer	5
	2.2	Das Phi- Verfahren - Berechnung nach den zulässigen Spannungen TGL 13503 Neu .	18
	2.3	Das Omega- Verfahren - Nach DIN 4114	47
	2.4	Das Kappa- Verfahren - Nach DIN 18 800 Neu	74
	2.5	Nachweis über Eurocode 3 / EN 1993	85
3	Zusa	ammenfassung und Vergleich	86
4	Anh	ang	87

Literatur

[001] Keine für vorliegenden Text.

1 Einleitung

Im nachfolgenden Text wird anhand eines gleichbleibenden Beispiels der Nachweis auf Knicken [001] infolge einer Normalkraft N mit verschiedenen Vorschriften und Modellen geführt. Es wird versucht eine chronologische Reihenfolge einzuhalten.

Ein gewalztes I- Profil besitzt folgende Maße:

Daraus ergeben sich die statischen Größen:

$$I_1 = 2 \cdot \frac{40^3 \cdot 4}{12} + \frac{8^3 \cdot (50 - 2 \cdot 4)}{12} = 44.459 \text{mm}^4 = I_{\min}$$

Und:

$$I_2 = 2 \cdot \frac{40 \cdot 4^3 + 40 \cdot 4 \cdot \left(\frac{50}{2} - \frac{4}{2}\right)}{12} + \frac{8 \cdot \left(50 - 2 \cdot 4\right)^3}{12} = 50.432 \text{mm}^4 = I_{\text{max}}$$

Der dazugehörige Trägheitsradius beträgt:

$$i_{\min} = \sqrt{\frac{44.459}{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8}} = 8,23$$
mm

Für den angenommenen Knickfall 2 nach Euler (gelenkig, gelenkig) ergibt sich eine Knicklänge s_k aus der gewählten Stablänge l = 500mm von:

$$s_k = \frac{l}{1} = \frac{500}{1} = 500$$
mm

Die Schlankheit λ kann berechnet werden:

$$\lambda = \frac{s_k}{i_{\min}} = \frac{500}{8,23} = 60,75$$

Die Fläche des Querschnitts:

$$A = (2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8) = 656 \text{mm}^2$$

Bei der angenommenen Belastung von $F=120{\rm KN}$ ergeben sich erfüllte Einzelnachweise für Knicken und Druck.

Nachweis gegen Knicken

Die Knickkraft F_K ist definiert mit:

$$F_K = \frac{\pi^2 \cdot E \cdot A}{\lambda^2}$$

 \Rightarrow

$$F_K = \frac{\pi^2 \cdot 210000 \cdot 656}{60,75^2} = 368,41 \text{KN}$$

Der Nachweis erfolgt (mit einer angenommenen Sicherheit S^1 von 3 gegen Knicken) über:

$$0,977 = 3 \cdot \frac{120}{368,41} = S \cdot \frac{F}{F_K} \le 1$$

¹Sollte zwischen 3 und 8 liegen.

•Nachweis auf Druck

Als Baustahl soll ein ST37² vorliegen.

$$\sigma_{vorh} = \frac{120000}{656} = \frac{F}{A} = 182,93 \frac{\text{N}}{\text{mm}^2} \approx 180 \frac{\text{N}}{\text{mm}^2} = \sigma_{zul}$$

Es ist zu vermuten, dass die Belastung durch Druck³ kritischer für den Versagensfall anzusehen ist, als ein Knicken des Profils.

Es ist bekannt, dass die Nachweise nicht einzeln geführt werden dürfen. Die Kombination beider ergeben Modelle, welche im Folgenden aufgezeigt werden.

²S235JR+AR, S235JRG2, 1.0036 bis 1.0038, Fe360B

 $^{^3}$ für den Lasfall HZ, für H gilt $\sigma_{zul}=150.$ Nicht für den Nachweis nach DIN4114!

2 Nachweise

2.1 Das Lambda- Verfahren - Druckstababsicherung nach Euler-Tetmajer

Knicken nach Euler-Tetmajer.

Das λ -Verfahren.

Dipl.- Ing. Björnstjerne Zindler, M.Sc.

www.Zenithpoint.de

Erstellt: 28. Januar 2020 - Letzte Revision: 27. Januar 2023

Inhaltsverzeichnis

1	Knic	ken nach Euler-Tetmajer - Vorbetrachtungen	3
	1.1	Fallunterscheidungen	3
	1.2	Knickartgrenzen	4
2	Knic	ken nach Euler-Tetmajer - Beispiel	5
	2.1	Bemessung	5
	2.2	Nachweise	6
3	Anh	ang	7
	3.1	Anhang a: Materialeigenschaften	7
	3.2	Anhang b: Sicherheiten	8
	3.3	Anhang c: Tetmajer-Koeffizienten a und b	9
	3.4	Anhang d: Tetmajer-Koeffizienten k_1 und k_2	10
	3.5	Anhang e: Historische Tetmajer-Koeffizienten	11

Literatur

[Dip] Dipl.-Ing. Björnstjerne Zindler, M.Sc. Das Omega-Verfahren.

- [IS03] Einführung in die Technische Mechanik István Szabó. Knicken, 8. neu bearbeitete Auflage 1975 Nachdruck 2003. ISBN 3-540-44248-0.
- [Kab] Karlheinz Kabus. Mechanik und Festigkeitslehre.

1 Knicken nach Euler-Tetmajer - Vorbetrachtungen

Die vorliegende Ausarbeitung beschäftigt sich mit Tetmajer aus akademischer Sicht. Daher weichen die im folgenden Text angegebenen Koeffizienten von denen in den üblichen Bautabellen ab.

Siehe dazu auch unter Anhang c.

1.1 Fallunterscheidungen

Nachweis ist in drei Fällen vorliegend, dabei ist die Schlankheit λ fallunterscheidend. [IS03][Kab]

• $\lambda_P < \lambda < \infty$ - Elastisches Knicken nach Euler

Die maximal zulässige Knickspannung:

$$\sigma_{max} = \pi^2 \cdot \frac{E}{\lambda^2}$$

Vorhandene Knickspannung:

$$\sigma_{vorh} = \frac{F}{A}$$

Nachweis:

$$\sigma_{vorh} \cdot S_{K,E} \le \sigma_{max}$$

Mit dem Knicksicherheitsfaktor $S_{K,E}$.

 λ_F < λ ≤ λ_P - Plastisches Knicken nach Tetmajer Die maximal zulässige Knickspannung:

$$\sigma_{max} = a - b \cdot \lambda$$

Wobei a und b werkstoffspezifische Werte darstellen.

Vorhandene Knickspannung:

$$\sigma_{vorh} = \frac{F}{A}$$

Nachweis:

$$\sigma_{vorh} \cdot S_{K,T} \le \sigma_{max}$$

Mit dem Knicksicherheitsfaktor $S_{K,T}$.

• $0 < \lambda \leq \lambda_F$ - Quetschen

Die maximal zulässige Druckspannung:

$$\sigma_{F,max} = \frac{\sigma_F}{S_F}$$
 oder $\sigma_{B,max} = \frac{\sigma_B}{S_B}$

Mit dem Sicherheitsfaktor ${\cal S}_F$ für Fließen oder ${\cal S}_B$ für Druckfestigkeit.

Vorhandene Druckspannung:

$$\sigma_{vorh} = \frac{F}{A}$$

Nachweis:

$$\sigma_{vorh} \cdot S_F \le \sigma_{F,max} \qquad \text{oder} \qquad \sigma_{vorh} \cdot S_B \le \sigma_{B,max}$$

Vorbetrachtungen

Hinweis

1.2 Knickartgrenzen

Die Grenzwerte und Koeffizienten sind nicht festgeschrieben, sie können je nach Quelle abweichend sein.

• **Die Knickartgrenze** $\lambda_{\mathbf{P}}$ ist berechenbar durch:

$$\lambda_P = \pi \cdot \sqrt{\frac{E}{\sigma_P}} \approx \pi \cdot \sqrt{\frac{E}{0, 8 \cdot \sigma_F}}$$

Mit:

Baustahl	$\sigma_P \left[\mathrm{Nmm}^{-2} \right]$	$\sigma_F \left[\mathrm{Nmm}^{-2} \right]$	λ_P
ST37	190	240	104
ST52	290	360	85

• Die Knickartgrenze $\lambda_{\mathbf{F}}$ ist berechenbar durch:

$$\lambda_F = \frac{a - \sigma_F}{b}$$

Mit:1

Baustahl	$a \left[\text{Nmm}^{-2} \right]$	$b \left[\text{Nmm}^{-2} \right]$	$\sigma_F \left[\text{Nmm}^{-2} \right]$	λ_F
ST37	310	1,14	240	61
ST52	450	1,90	360	47

• Die grafische Darstellung für ST37:

• Die grafische Darstellung für ST52:

¹Tetmajer-Koeffizienten ohne Sicherheiten angegeben.

Grenzen

2 Knicken nach Euler-Tetmajer - Beispiel

2.1 Bemessung

Gegeben ist ein Profil folgender Form, eine Stablänge 500mm, ein Knickfall 2 nach Euler und eine Beispiel einwirkende Kraft von 120KN. Die Trägheitsmomente sind berechenbar über:

Bemessung

$$I_1 = 2 \cdot \frac{40^3 \cdot 4}{12} + \frac{8^3 \cdot (50 - 2 \cdot 4)}{12} = 44.459 \text{mm}^4 = I_{\text{min}}$$

Und:

$$I_2 = 2 \cdot \frac{40 \cdot 4^3 + 40 \cdot 4 \cdot \left(\frac{50}{2} - \frac{4}{2}\right)}{12} + \frac{8 \cdot (50 - 2 \cdot 4)^3}{12} = 50.432 \text{mm}^4 = I_{\text{max}}$$

Der dazugehörige Trägheitsradius beträgt:

1

$$i_{\min} = \sqrt{\frac{44.459}{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8}} = 8,23 \text{mm}$$

Für den angenommenen Knickfall 2 nach Euler (gelenkig, gelenkig) ergibt sich eine Knicklänge s_k aus der gewählten Stablänge l = 500mm von:

$$s_k = \frac{l}{1} = \frac{500}{1} = 500$$
mm

Die Schlankheit λ kann berechnet werden:

$$\lambda = \frac{s_k}{i_{\min}} = \frac{500}{8,23} = 60,75$$

Der Nachweis erfolgt über plastisches Knicken nach Tetmajer und (oder) reine Druckbelastung (Quetschen).

Bei einer Profilbeanspruchung mit F = 120KN kommt es in diesem zu einer vorhandenen Spannung σ_{vorh} von:

$$\sigma_{vorh} = \frac{F}{A} = \frac{120.000}{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8} = 183 \text{Nmm}^{-2}$$

Die maximal zulässige Knickspannung ist errechenbar.

$$\sigma_{max} = a - b \cdot \lambda = 310 - 1,14 \cdot 60,75 = 240,7 \text{Nmm}^{-2}$$

Für das Quetschen sind ebenfalls die Maximalspannungen vorgegeben.

 $\sigma_{F,max} = 240 \text{Nmm}^{-2} \qquad \qquad \sigma_{B,max} = 360 \text{Nmm}^{-2}$

Die Sicherheit soll mit S = 1, 5 als ausreichend angesehen werden.

Nachweise

2.2 Nachweise

• Plastisches Knicken nach Tetmajer

 $\sigma_{vorh} \cdot S_{K,T} \le \sigma_{max}$

 \Rightarrow

$$183\cdot 1, 5 = 274, 5 \mathrm{Nmm^{-2}} > 240, 7 \mathrm{Nmm^{-2}}$$

Nicht erfüllt!

Das Profil ist zu 14% überlastet.

• Quetschen

```
\sigma_{vorh} \cdot S_F \le \sigma_{F,max} \qquad \qquad \sigma_{vorh} \cdot S_B \le \sigma_{B,max}
```

 \Rightarrow

 $183 \cdot 1, 5 = 274, 5 \text{Nmm}^{-2} > 240 \text{Nmm}^{-2}$

 $183 \cdot 1, 5^2 = 411, 8$ Nmm⁻² > 360 Nmm⁻²

Nicht erfüllt!

Das Profil ist in beiden Nachweisen zu 14% überlastet.

3 Anhang

3.1 Anhang a: Materialeigenschaften

Charakteristische Größe $[Nmm^{-2}]$ $ST37 \cong S235$ $ST52\cong S335$ Proportionalitätsgrenze 190290Dehngrenze σ_P , R_P Streckgrenze 360 Fließgrenze 240 σ_F , R_e , $f_{y,k}$ Zugfestigkeit 360 510 σ_B , R_m , $f_{u,k}$

Bandbreiten nach Materialdicke $[Nmm^{-2}]$	ST37 ≅ S235	ST52 ≅ S335
Streckgrenze Fließgrenze	$215 \cdots 240$	$315 \cdots 360$
σ_F , R_e , $f_{y,k}$		
Zugfestigkeit	240 470	400 620
σ_B , R_m , $f_{u,k}$	340 · · · 470	$490 \cdots 630$

Anhang a

3.2 Anhang b: Sicherheiten

Anhang b

	Stahlbau	Maschinenbau
Euler	3,0	5 bis 10
Tetmajer	1,5	3 bis 7,5

3.3 Anhang c: Tetmajer-Koeffizienten *a* und *b*

Wieso gibt es unterschiedliche Tetmajer-Koeffizienten für ein und dasselbe Material in der Literatur?

- Weil verschiedene Darstellungsformen der Tetmajer-Geraden gibt, siehe Anhang d.
- Weil manche mit und manche ohne Sicherheiten angegeben sind.
- Weil die Koeffizienten aufwändig experimentell ermittelt wurden und daher Mittelwerte darstellen.
- Weil der Ingenieur die Grenzen zwischen den einzelnen Versagensfällen zu genau nimmt.
- Weil die Tetmajer-Gerade keine Gerade ist.

• ...

Für verschiedenste Materialien angewandt, ist die Tetmajer-Gerade streng genommen eine Parabel der Form

$$\sigma = a + b \cdot \lambda + c \cdot \lambda^2$$

mit $c \approx 0 \rightarrow c \stackrel{!}{=} 0$ für die gebräuchlichen Baustähle². Mit der Kenntnis von $P_F(\lambda_F, \sigma_F)$ und $P_P(\lambda_P, \sigma_P)$ sind jedoch die Koeffizienten a und b vollständig definiert. Daher braucht es dort keiner aufwändiger Experimente zum Ermitteln der Koeffizienten. Methodisch besser war es, die Werte λ_F und λ_P experimentell zu ermitteln und diese als Mittelwert zu nutzen. Das Ergebnis wird dann gern gottgegeben, als solum possibilitate³ angesehen. Der Baustahl selbst, wie bei jedem Naturprodukt, sieht das nicht so streng. Für ST37 genügt es durchaus, den plastischen Knickbereich (Tetmajer-Gerade) mit $60 < \lambda < 115$ nach [Dip] für ST37 anzugeben, ohne eine Nichtverletzung der Allgemeingültigkeit nachweisen zu müssen. Die Änderung des Intervalls hat aber durchaus größere Auswirkung auf die Regression von a und b. Werden dann noch Sicherheiten mit einberechnet, sind unterschiedliche Angaben der Koeffizienten vorprogrammiert. Eine Plausibilitätskontrolle ist immer angebracht, wie zum Beispiel, dass an den Punkten P_F und P_P keine Sprünge (Unstetigkeiten) im Graf auftreten. Ein kritischer Blick ist zu jeder Zeit angebracht.

Weiterführend siehe unter [Dip]. Dort ist die Entwicklung einer Berechnungsmöglichkeit der Tetmajer-Parabel ausführlich dargestellt.

 $c_{\text{ST37}} = -0,0136$ $c_{\text{ST52}} = -0,0289$ Anhang c

²Nach den hier festgelegten Konventionen gilt nach [Dip]:

³lat., die einzige Möglichkeit, auch Ultima Ratio

3.4 Anhang d: Tetmajer-Koeffizienten k_1 und k_2

Anhang d

Die ursprüngliche Darstellung der Tetmajer-Parabel beinhaltete die Koeffizienten k_1 und k_2 .

$$\sigma = a + b \cdot \lambda + c \cdot \lambda^2$$

 \Rightarrow

 \Rightarrow

$$\sigma = a \cdot \left(1 + \frac{b}{a} \cdot \lambda + \frac{c}{a} \cdot \lambda^2 \right)$$
$$\sigma = \sigma_F \cdot \left(1 + k_1 \cdot \lambda + k_2 \cdot \lambda^2 \right)$$

 \Rightarrow

Werkstoff	λ_{MIN}	$\sigma_F \left[\mathrm{Nmm}^{-2} \right]$	k_1	k_2
Weicher Stahl	105	310	0,00368	0,00000
Mittelharter Stahl	89	335	0,00185	0,00000
Nickelstahl	86	470	0,00490	0,00000
Grauguss	80	776	0,01546	0,00007
Kiefernholz	100	293	0,00662	0,00000

3.5 Anhang e: Historische Tetmajer-Koeffizienten

Anhang e

Material	a $[\text{kg} \cdot \text{cm}^{-2}]$	$\mathbf{b} \left[\mathrm{kg} \cdot \mathrm{cm}^{-2} \right]$	Gültigkeitsbereich
Gusseisen	7760	120	$0 \le \lambda \le 80$
St 37	2400	0	$0 \le \lambda \le 60$
St 37	2890	8,175	$60 < \lambda \le 100$
St 48	3120	0	$0 \le \lambda \le 60$
St 48	4690	26,175	$60 < \lambda \le 100$
St 52	3600	0	$0 \le \lambda \le 60$
St 52	5890	38,175	$60 < \lambda \le 100$
Niedriglegierter Stahl	4700	23,05	$0 \le \lambda \le 86$
Nadelholz	300	2,00	$0 \le \lambda \le 100$

 $\operatorname{LAT}_{E} X 2_{\varepsilon}$

3 Anhang

2.2 Das Phi- Verfahren - Berechnung nach den zulässigen Spannungen TGL 13503 Neu

Das Phi- Verfahren nach TGL 13503 / 1982

Dipl.- Ing. Björnstjerne Zindler, M.Sc.

www.Zenithpoint.de

Erstellt: 16. Januar 2020 - Letzte Revision: 23. April 2020

Inhaltsverzeichnis

1	Nac	hweis für den mittig gedrückten, einteiligen Stab	3
2	Beis	piel - Bemessung	4
	2.1	Sicherheiten ν	5
	2.2	Schlankheitsgrade λ und $\overline{\lambda}$	6
		2.2.1 Grundlagen	6
		2.2.2 Beispiel	6
	2.3	Entscheidungskriterium geometrisch günstig/ungünstig D	7
		2.3.1 Grundlagen	7
		2.3.2 Beispiel	7
	2.4	Imperfektion des gedrückten Stabes μ_N	9
		2.4.1 Grundlagen	9
		2.4.2 Beispiel	9
	2.5	Numerische Bestimmung des Knickfaktors φ	10
		2.5.1 Grundlagen	10
		2.5.2 Beispiel	10
	2.6	Auslenkamplitude des imperfekten Stabes u	11
		2.6.1 Grundlagen	11
		2.6.2 Beispiel	11
3	Beis	niel - Nachweis	12
3	Beis	piel - Nachweis	12
3 4	Beis Anh	piel - Nachweis ang	12 13
3 4	Beis Anh 4.1	piel - Nachweis ang Werkstoffeigenschaften	12 13 13
3 4	Beis Anh 4.1 4.2	piel - Nachweis ang Werkstoffeigenschaften	12 13 13 14
3 4	Beis Anh 4.1 4.2 4.3	piel - Nachweis ang Werkstoffeigenschaften Knickspannungslinien Knickfaktor φ über $\overline{\lambda}$	12 13 13 14 15
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - Nachweis ang Werkstoffeigenschaften Knickspannungslinien Knickfaktor φ über $\overline{\lambda}$ Knickfaktor φ über λ	12 13 13 14 15 16
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - Nachweis ang Werkstoffeigenschaften Knickspannungslinien Knickfaktor φ über $\overline{\lambda}$ Knickfaktor φ über λ 4.4.1 $\sigma_F = 240$ Nmm ⁻² , Kennlinie – a	12 13 13 14 15 16 16
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - NachweisangWerkstoffeigenschaftenKnickspannungslinienKnickfaktor φ über $\overline{\lambda}$ Knickfaktor φ über λ 4.4.1 $\sigma_F = 240$ Nmm ⁻² , Kennlinie – a4.4.2 $\sigma_F = 240$ Nmm ⁻² , Kennlinie – b	12 13 13 14 15 16 16 16 17
3	Beis Anh 4.1 4.2 4.3 4.4	piel - Nachweis ang Werkstoffeigenschaften	12 13 14 15 16 16 17 18
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - Nachweis ang Werkstoffeigenschaften	12 13 14 15 16 16 17 18 19
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - NachweisangWerkstoffeigenschaftenKnickspannungslinienKnickspannungslinienKnickfaktor φ über $\overline{\lambda}$ Knickfaktor φ über λ 4.4.1 $\sigma_F = 240$ Nmm ⁻² , Kennlinie – a4.4.2 $\sigma_F = 240$ Nmm ⁻² , Kennlinie – b4.4.3 $\sigma_F = 240$ Nmm ⁻² , Kennlinie – c4.4.4 $\sigma_F = 300$ Nmm ⁻² , Kennlinie – a4.4.5 $\sigma_F = 300$ Nmm ⁻² , Kennlinie – b	12 13 13 14 15 16 16 16 17 18 19 20
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - NachweisangWerkstoffeigenschaftenKnickspannungslinienKnickspannungslinienKnickfaktor φ über $\overline{\lambda}$ Knickfaktor φ über λ 4.4.1 $\sigma_F = 240$ Nmm ⁻² , Kennlinie – a4.4.2 $\sigma_F = 240$ Nmm ⁻² , Kennlinie – b4.4.3 $\sigma_F = 240$ Nmm ⁻² , Kennlinie – c4.4.4 $\sigma_F = 300$ Nmm ⁻² , Kennlinie – a4.4.5 $\sigma_F = 300$ Nmm ⁻² , Kennlinie – b4.4.6 $\sigma_F = 300$ Nmm ⁻² , Kennlinie – c	12 13 13 14 15 16 16 16 17 18 19 20 21
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - Nachweis ang Werkstoffeigenschaften	12 13 13 14 15 16 16 17 18 19 20 21 22
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - Nachweis ang Werkstoffeigenschaften	12 13 13 14 15 16 16 16 17 18 19 20 21 22 23
3 4	Beis 4.1 4.2 4.3 4.4	piel - Nachweis ang Werkstoffeigenschaften	12 13 13 14 15 16 16 17 18 19 20 21 22 23 24
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - Nachweis ang Werkstoffeigenschaften	12 13 14 15 16 17 18 19 20 21 22 23 24 25
3 4	Beis Anh 4.1 4.2 4.3 4.4	piel - Nachweis ang Werkstoffeigenschaften	12 13 14 15 16 16 17 18 19 20 21 22 23 24 25 26

Literatur

[001] TGL 13503 Ausgabe 1982 Teil 1 und 2.

[Dip] Dipl.- Ing. Björnstjerne Zindler, M.Sc. Das Omega- Verfahren nach DIN4114.

1 Nachweis für den mittig gedrückten, einteiligen Stab

Der geforderte Nachweis darf bei planmäßig mittiger Belastung¹ in folgender Form durchgeführt werden: $\sigma_{vorh} = \frac{F}{A} \leq \sigma_{zul} \cdot \varphi$

Nachweis

Wobei:

 σ_{zul}

- A [001] für den untersuchten Grenzlastfall und die Festigkeitsklasse des Stahls geltende zulässige Spannung nach TGL 13500 Teil 1
- φ Knickfaktor, abhängig von der Form des Querschnitts und den Eigenspannungen nach TGL 13503 Neu Teil 1 Tabelle 2 abhängig vom bezogenen Schlankheitsgrad $\overline{\lambda}$ oder vom Schlankheitsgrad λ und der Streckgrenze

Zu beachten ist, dass in σ_{zul} aus Tabelle 2 die Sicherheit ν einberechnet ist.

 $\sigma_c \cdot (1 + \mu_N \cdot f_N) + \sigma_{bc} \cdot f_M \le \sigma_{zul} \quad \text{und} \quad \sigma_c \cdot (\mu_N \cdot f_N - 1) + \sigma_{bz} \cdot f_M \le \sigma_{zul}$

Mit:

 f_N, f_M Faktor, der die Vergrößerung der Momente nach Th. II. Ordnung gegenüber Th. I. Ordnung ausdrückt.

¹Ein Nachweis des planmäßig außermittig beanspruchten Stabes ist anspruchsvoll. So erweitert sich der Nachweis zu:

 $[\]sigma_c$ Absolutwert der Druckspannung

 $[\]sigma_{bc}$ Absolutwert der Biege-Druckspannung

 $[\]sigma_{bz}$ Absolutwert der Biege-Zugspannung

 $[\]sigma_{zul}$ Zulässige Spannung, abhängig vom Grenzlastfall

2 Beispiel - Bemessung

Bemessung

Gegeben ist ein Profil folgender Form:

[Dip]

Die Trägheitsmomente sind berechenbar über:

$$I_1 = 2 \cdot \frac{40^3 \cdot 4}{12} + \frac{8^3 \cdot (50 - 2 \cdot 4)}{12} = 44.459 \text{mm}^4 = I_{\min}$$

Und:

$$I_2 = 2 \cdot \frac{40 \cdot 4^3 + 40 \cdot 4 \cdot \left(\frac{50}{2} - \frac{4}{2}\right)}{12} + \frac{8 \cdot \left(50 - 2 \cdot 4\right)^3}{12} = 50.432 \text{mm}^4 = I_{\text{max}}$$

Der dazugehörige Trägheitsradius beträgt:

$$i_{\min} = \sqrt{\frac{44.459}{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8}} = 8,23$$
mm

Für den angenommenen Knickfall 2 nach Euler (gelenkig, gelenkig) ergibt sich eine Knicklänge s_k aus der gewählten Stablänge l = 500mm von:

$$s_k = \frac{l}{1} = \frac{500}{1} = 500$$
mm

Die belastende Kraft wird mit 120kN angenommen.

2.1 Sicherheiten ν

Nach TGL 13503 Neu Teil 1.

Die Sicherheiten betragen für die einzelnen Lastfälle:

Н	$\nu_r = 1,50$
HZ	$\nu_r=1,33$
S	$\nu_r = 1, 20$

Für den hier nicht betrachteten Ausnahmefall, dass die ideale Knicklast als maßgebend angesehen wird, unter Umgehung des Schlankheitsgrades:

Н	$\nu_i = 2,00$
HZ	$\nu_i = 1,78$
S	$\nu_i = 1,60$

Sicherheiten

Schlankheitsgrade λ und $\bar{\lambda}$ 2.2

2.2.1 Grundlagen

Schlankheitsgrade

Der Schlankheitsgrad ist das Verhältnis der Knicklänge zum Trägheitsradius.

$$\lambda = \frac{l}{i}$$

Der bezogene Schlankheitsgrad.

$$\lambda_S = \pi \cdot \sqrt{\frac{E}{\sigma_E}}$$

 $\overline{\lambda} = \frac{\lambda}{\lambda_S}$

 \Rightarrow

σ _F N/mm²	Հs ≈
240	93
300	83
360	76
450	68

Mit:

E	Elastizitätsmodul mit $210\cdot$	$10^3 \rm Nmm^{-2}$

Dabei gilt:²

$\lambda < 10$	Kein Nachweis nötig
$\lambda \le 150$	Druckstäbe in Brücken des Verkehrsbaus
$\lambda \le 200$	Füllstäbe, Hilfsstäbe
$\lambda \le 300$	Allgemeine Grenze für Druckstäbe

2.2.2 Beispiel

Die Schlankheit λ kann berechnet werden:

$$\lambda = \frac{s_k}{i_{\min}} = \frac{500}{8,23} = 60,75$$

Der bezogene Schlankheitsgrad dazu für $\sigma_F = 240 \text{Nmm}^{-2}$.

$$\overline{\lambda} = \frac{\lambda}{\lambda_S} = \frac{60,75}{93} = 0,654$$

 $^{^2}$ Diese Grenze steht nicht explizit in der TGL 15503 Neu Teil 1. Jedoch beginnen die Tabellen des Knickfaktors φ erst ab $\lambda > 10$. Sowie bei der Auswertung des Koeffizienten c_1 bei der Imperfektion μ_N lässt diese Grenze vermuten.

2.3 Entscheidungskriterium geometrisch günstig/ungünstig D

2.3.1 Grundlagen

Die Festlegung des Kriteriums ist notwendig für die Auswahl der Knickspannungslinie. Die TGL Diskriminante 13503 Neu gibt dafür eine rein grafische Auswahl an und alternativ als numerische Möglichkeit über die Berechnung einer Diskriminante *D*.

Grafisch über TGL 13503 Teil 1 Tabelle 2

Diese Tabelle nutzt das Kriterium günstig/ungünstig direkt.

Grafisch über TGL 13503 Teil 2 Tabelle 6

Hier ist die Auswahl indirekt eingearbeitet.

Numerisch nach TGL 13503 Teil 2 Abschnitt 6.1.3. Knickfaktoren

Als geometrisch günstig gilt ein Querschnitt dann, wenn gilt:

$$D = rac{\sqrt{A \cdot I}}{W_{pl}} < 1,15$$
 oder $D = rac{z}{i \cdot lpha} < 1,15$

Wobei:

D Wert des Entscheidungskriteriums

z Randfaserabstand vom Schwerpunkt aus

 α der Quotient W_{pl}/W_{el} aus dem plastischen bzw. elastischen Widerstandsmoment, auch als Angabe der Systemreserve des Profils

2.3.2 Beispiel

Für die Achse 2-2 (kein Knicken zu erwarten)

Das elastische Widerstandsmoment ist ermittelbar:

$$W_{el,(2-2)} = \frac{I_{\max}}{z} = \frac{50.432}{\frac{50}{2}} = 2.017 \text{mm}^3$$

Das plastische Widerstandsmoment ist ermittelbar:

$$W_{pl,(2-2)} = \sum_{i} A_i \cdot z_i$$

 \Rightarrow

$$\begin{split} W_{pl,(2-2)} &= 2 \cdot \left(40 \cdot 4 \cdot \left(\frac{50}{2} - \frac{4}{2} \right) \right) + 2 \cdot \left(8 \cdot \left(\frac{50}{2} - 4 \right) \cdot \frac{1}{2} \cdot \left(\frac{50}{2} - 4 \right) \right) = 10.888 \text{mm}^3 \\ \Rightarrow \\ \alpha_{(2-2)} &= \frac{10.888}{2.017} = 5,4 \end{split}$$

Damit ist die Diskriminante berechenbar:

$$D_{(2-2)} = \frac{\sqrt{656 \cdot 50.432}}{10.888} = \frac{\frac{50}{2}}{8,768 \cdot 5,4} = 0,528 < 1,15$$

Für die Achse 2 ist das Profil geometrisch günstig.

Für die Achse 1-1 (knickgefährdete Achse)

Das elastische Widerstandsmoment ist ermittelbar:

$$W_{el,(1-1)} = \frac{I_{\min}}{z} = \frac{44.459}{\frac{40}{2}} = 2.223 \text{mm}^3$$

Das plastische Widerstandsmoment ist ermittelbar:

$$W_{pl,(1-1)} = \sum_{i} A_i \cdot z_i$$

 \Rightarrow

 \Rightarrow

$$W_{pl,(1-1)} = 4 \cdot \left(\frac{40}{2} \cdot 4 \cdot \frac{40}{4}\right) + 2 \cdot \left((50 - 2 \cdot 4) \cdot \frac{8}{2} \cdot \frac{8}{4}\right) = 3.872 \text{mm}^3$$
$$\alpha = \frac{3.872}{2.223} = 1,742$$

Damit ist die Diskriminante berechenbar:

$$D_{(1-1)} = \frac{\sqrt{656 \cdot 44.459}}{3.872} = \frac{\frac{40}{2}}{8.23 \cdot 1.742} = 1,395 > 1,15$$

Für die Achse 1 ist das Profil geometrisch ungünstig.

Auswahl der Knickspannungslinie

Damit ist durch Tabelle 2 nach TGL 13503 Neu Teil 1 die Knickspannungslinie b mit den Koeffizienten $c_1 = 10$ und $c_2 = 320$ gültig.

Mit $\overline{\lambda} = 0,654$ ergibt sich nach Tabelle 1 nach TGL 13503 Neu Teil 1 ein Knickfaktor φ von:

$$\varphi = 0,807$$

Alternativ dazu nach Seite 17 TGL 13503 Neu Teil 1 Tabelle $\sigma_F = 240$ Nmm⁻² Knickspannungslinie b für $\lambda = 60, 75$:

$$\varphi = 0,804$$

2.4 Imperfektion des gedrückten Stabes μ_N

2.4.1 Grundlagen

Für die Berechnung der Imperfektion³ gibt die TGL 13503 Neu Teil 1 Abschnitt 9.1 eine Möglichkeit

Imperfektion

$$\mu_N = \frac{\lambda \cdot \sqrt{\frac{\sigma_F}{\sigma_F^*} - c_1}}{c_2} = \frac{92, 93 \cdot \overline{\lambda} - c_1}{c_2} \approx \frac{93 \cdot \overline{\lambda} - c_1}{c_2} \ge 0$$

Wobei:

an.

 $\begin{array}{ll} c_1,c_2 & \mbox{abhängig und ablesbar aus der Tabelle der Knickspannungslinien} \\ \sigma_F & \mbox{Streckgrenze des benutzten Materials in Nmm^{-2}} \\ \sigma_F^* & 240 \mbox{Nmm}^{-2} \end{array}$

2.4.2 Beispiel

Die Imperfektion μ_N ist definiert für $\sigma_F = 240$ Nmm⁻²:

$$\mu_N = \frac{\lambda \cdot \sqrt{\frac{\sigma_F}{\sigma_F^*} - c_1}}{c_2} = \frac{60,75 - 10}{320} = 0,159 \ge 0$$

³Die grafische Darstellung der Imperfektion μ_N :

2.5 Numerische Bestimmung des Knickfaktors φ

2.5.1 Grundlagen

Knickfaktor

Neben der grafischen Bestimmung des Knickfaktors⁴ gibt die TGL 13503 Neu Teil 2 Abschnitt 6.1.3 eine numerische Möglichkeit der Bestimmung von φ an. So gilt:

$$\varphi = p - \sqrt{p^2 - q}$$

Mit:

$$p = \frac{1}{2} \cdot \left(\frac{1+\mu_N}{\overline{\lambda}^2} + 1\right) \qquad \qquad q = \frac{1}{\overline{\lambda}^2}$$

Mit:

 μ_N Imperfektion des gedrückten Stabes

2.5.2 Beispiel

Über die bekannten Werte von μ_N und $\overline{\lambda}$ ist φ ermittelbar.

$$p = \frac{1}{2} \cdot \left(\frac{1+0,159}{0,654^2} + 1\right) = 1,855 \qquad q = \frac{1}{0,654^2} = 2,338$$
$$\varphi = 1,855 - \sqrt{1,855^2 - 2,338} = 0,805$$

 \Rightarrow

⁴Die grafische Darstellung der Knicklinien zwecks Berechnung des Knickfaktors φ :

2.6 Auslenkamplitude des imperfekten Stabes u

2.6.1 Grundlagen

Die Auslenkung des imperfekten Stabes kann informativ nach TGL 13503 Neu Teil 2 Abschnitt 6.1.2 berechnet werden.

$$u = \mu_N \cdot \frac{W_T}{A}$$

Dabei ist W_T das modifizierte Widerstandsmoment nach TGL 13503 Neu Teil 2 Abschnitt 9.1. Dort wird man direkt zur TGL 13500 Neu Teil 2 Abschnitt 2.1.1 umgeleitet.

$$W_T = \frac{W_{el} + W_{pl}}{2} \le 1, 2 \cdot W_{el}$$

2.6.2 Beispiel

Für vorliegendes Beispiel gilt dann:

$$\begin{split} & W_{T,(1-1)} = \frac{W_{el,(1-1)} + W_{pl,(1-1)}}{2} \leq 1, 2 \cdot W_{el,(1-1)} \\ \Rightarrow \\ & W_{T,(1-1)} = \frac{2.223 + 3.872}{2} \leq 1, 2 \cdot 2.223 \\ \Rightarrow \\ & W_{T,(1-1)} = 3.047, 5 \text{mm}^3 \geq 2.667, 6 \text{mm}^3 \\ \Rightarrow \\ & W_{T,(1-1)} = 2.667, 6 \text{mm}^3 \end{split}$$

 \Rightarrow

$$u = 0,159 \cdot \frac{2.667,6}{656} = 0,647 \text{mm}$$

Auslenkung

3 Beispiel - Nachweis

Nachweis

Erfolgt jetzt im Grenzlastfall H durch:

$$\sigma_{vorh} = \frac{F}{A} \le \sigma_{zul} \cdot \varphi$$
$$\frac{120.000}{656} \le 160 \cdot 0,805$$

 \Rightarrow

 \Rightarrow

$$183 \text{Nmm}^{-2} > 129 \text{Nmm}^{-2}$$

Der Nachweis ist nicht erfüllt.

4 Anhang

4.1 Werkstoffeigenschaften

Festig- keits- klass e	Zug- festig keit Ø R	ug- Streck- Bruch- estig grenze deh- eit σ _B σ _F δ ₅		Elastizi- tätsmodul E	Schub- modul G	Wärme- dehn- zahl X _t
	N/mm ²	N/mm ²	%	N/mm ²	N/mm ²	1/K
S 38/24	380	240	25		(
S 45/30	450	300	22	210 000	81 000	0.000 012
S 52/36	520	360	22			-,
S 60/45	600	450	20			

Nr.	Art der Bauteile oder Schweißnähte	Beanspruchung				S 38/24 Grenzlastfall H HZ S		S 45/30 Grenzlastfall H HZ S		S 52/36 Grenzlastfall H HZ -S		S 60/45 Grenzlastfall H HZ S		ill S		
1 Grundwerkstoff in	Zug, Druck Ø	z	Øy	160	180	200	200	225	250	240	270	300	300	338	376	
2	2 geschraubten, genieteten 3 oder geschweißten	Schub		τ	92	104	116	116	131	146	139	156	173	173	195	217
3		mehrachsig, Nachweis	σz	Øγ	180	190	200	225	238	250	270	285	300	338	357	376
4		nach Formel (3) oder (3a)		τ	104	110	116	131	139	146	156	165	173	195	206	217

Anhang

4.2 Knickspannungslinien

		Querschnitt								
	geometrisch	günstig		geometrisch ur	geometrisch ungünstig					
Eigen- spannungen	z. В. О П									
	Knick- spannungslinie	C ₁	C ₂	Knick- spannungslinie	C1	C ₂				
gering	a	15	500	b	10	320				
$t \leq 40 \text{ mm}^{*1}$	b	10	320	с	10	220				
hoch $t > 40 \text{ mm}^{*1}$	с	10	220	d	10	160				

Oder:

Querschnitt und Knickrichtung	Eigenspannungseinfluß	Dicke t mm	Knickspan- nungslinie
0 Å Å Ť	 ohne Längsnähte oder spannungsarm geglüht oder geschweißt 		a
	- mit Längsnähten	≦40 >40	b C
$\begin{array}{c c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ $	 ohne Längsnähte oder spannungsarm geglüht oder geschweißt 	-	b
	- mit Längsnähten	≦ <u>40</u> > 40	c d
ТГ	- brenngeschnitten	-	c

4.3 Knickfaktor φ über $\bar{\lambda}$

					1						
$\frac{1}{\lambda}$		für Knicksp	(annungslinie			λ	-	für Knickspi	q ` an∩ungslinie		
	a	ь	с	d			а	b	с	d ·	
0.108 0.15 0.161 0.2 0.25	1.000 0.993 983	1.000 0.988 0.973 958	1.000 0.982 0.961 .940	1.000 0.975 0.947 .919 .892 .864 .836 .808 .779	1.000 0.975 0.947 .919		1.6 1.7 1.8 1.9 2.0	0.337 .303 .273 .248 .225	0.313 .283 .256 .233 .213	0.290 .263 .239 .218 .200	0.267 .243 .222 .203 .187
0.3 0.35 0.4 0.45 0.5	.973 .962 .950 .938 .924	.942 .926 .910 .892 .873	.919 .897 .874 .851 .827		.919 .892 .864 .836 .808 .779		2.1 2.2 2.3 2.4 2.5	.206 .188 .173 .160 .148	.195 .179 .165 .153 142	.184 .169 .157 .145 .135	.172 .159 .147 .137 .128
0.55 0.6 0.65 0.7 0.75	.909 .893 .874 .853 830	.852 .831 .807 .782 755	.802 .776 .749 .721 692	.751 .721 .692 .662 .633		2.6 2.7 2.8 2.9 3.0	.1373 .1277 .1191 .1113 .1043	.1317 .1227 .1146 .1073 .1007	.1256 .1172 .1097 .1028 .0966	.1190 .1113 .1043 .0980 .0922	
0.8 0.85 0.9 0.95 1.0	.804 .775 .743 .710 .676	.727 .697 .667 .635 .604	.663 .634 .604 .575 .546	.604 .575 .547 .520 .494		3.1 3.2 3.3 3.4 3.5	.0979 .0921 .0867 .0819 .0774	.0946 .0891 .0840 .0794 .0751	.0909 .0857 .0809 .0765 .0725	.0869 .0820 .0775 .0734 .0696	
1.05 1.1 1.15 1.2 1.25	.640 .605 .571 .538 .507	.573 .543 .514 .486 459	.518 .492 .466 .441 .418	.469 .445 .422 .400 .380		3.6 3.7 3.8 3.9 4.0	.0733 .0695 .0659 .0627 .0597	.0712 .0675 .0642 .0610 .0581	.0688 .0653 .0621 .0591 .0564	.0661 .0628 .0598 .0570 .0544	
1.3 1.35 1.4 1.45 1.5	.477 .450 .424 .400 .377	.434 .411 .388 .368 .348	.396 .376 .356 .338 .321	.380 .361 .342 .325 .309 .294		4.1 4.2 4.3 4.4 4.5	.0569 .0542 .0518 .0495 .0474	.0554 .0529 .0506 .0484 .0463	.0538 .0514 .0491 .0470 .0451	.0519 .0496 .0475 .0455 .0436	

5)

 5 Obwohl eine numerische Berechnungsgrundlage für φ bekannt ist, im Folgenden die Regressionspolynome 6. Grades zur Berechnung des Knickfaktors sowie die grafische Darstellung der Tabellenwerte und der regressierten Funktion, weiterhin die zu erwartende Abweichung zwischen Tabellen- und Regressionswerte.

• Knicklinie a:

• Knicklinie b:

$$\varphi_b = 0,9614 + \frac{\bar{\lambda}}{3,22501} - \frac{\bar{\lambda}^2}{0,86174^2} + \frac{\bar{\lambda}^3}{1,03053^3} - \frac{\bar{\lambda}^4}{1,37746^4} + \frac{\bar{\lambda}^5}{1,89919^5} - \frac{\bar{\lambda}^6}{2,75272^6}$$

• Knicklinie c:

• Knicklinie d:

$$\varphi_d = 1,03519 \stackrel{!}{-} \frac{\bar{\lambda}}{3,06801} - \frac{\bar{\lambda}^2}{1,27696^2} + \frac{\bar{\lambda}^3}{1,20656^3} - \frac{\bar{\lambda}^4}{1,49259^4} + \frac{\bar{\lambda}^5}{1,97822^5} - \frac{\bar{\lambda}^6}{2,79876^6}$$

4.4 Knickfaktor φ über λ

Für die Kennlinie d gibt es keine Ablesemöglichkeit über λ in der TGL 13503 Neu Teil 1.

4.4.1
$$\sigma_F = 240 \text{Nmm}^{-2}$$
, Kennlinie – a

							Contract of the local division of the local				
λ	0	1	2	3	4.	5	6	7	8	. 9	λ
10 20 30 40 50 60 70 80 90 100	1,000 ,990 ,968 ,943 ,913 ,876 ,828 ,768 ,697 ,622	1,000 ,988 ,965 ,940 ,910 ,872 ,823 ,762 ,690 ,614	1,000 ,985 ,963 ,937 ,906 ,867 ,817 ,755 ,683 ,607	1,000 ,983 ,961 ,935 ,903 ,863 ,811 ,748 ,675 ,600	1,000 ,981 ,958 ,932 ,899 ,858 ,806 ,741 ,667 ,592	1,000 ,979 ,956 ,929 ,896 ,853 ,800 ,734 ,660 ,585	,998 ,977 ,953 ,926 ,892 ,849 ,794 ,794 ,727 ,652 ,577	,996 ,975 ,951 ,923 ,888 ,884 ,787 ,720 ,645 ,570	,994 ,972 ,948 ,920 ,884 ,889 ,781 ,712 ,637 ,563	,992 ,970 ,946 ,916 ,880 ,833 ,775 ,705 ,630 ,556	10 20 30 40 50 60 70 80 90 100
110 120 130 140 150 160 170 180 190 200	,549 ,432 ,424 ,375 ,332 ,296 ,265 ,239 ,216 ,196	,542 ,476 ,419 ,370 ,328 ,293 ,263 ,263 ,214 ,195	,535 ,470 ,414 ,366 ,325 ,290 ,260 ,234 ,212 ,193	,528 ,464 ,409 ,361 ,321 ,286 ,257 ,232 ,210 ,191	,521 ,458 ,404 ,357 ,317 ,283 ,254 ,229 ,208 ,189	,515 ,452 ,399 ,353 ,313 ,280 ,252 ,227 ,206 ,187	,508 ,447 ,348 ,310 ,277 ,249 ,225 ,204 ,186	,501 ,441 ,389 ,344 ,306 ,274 ,246 ,223 ,202 ,184	,495 ,435 ,384 ,340 ,303 ,271 ,244 ,220 ,200 ,182	,489 ,430 ,379 ,336 ,300 ,268 ,241 ,218 ,198 ,181	110 120 130 140 150 160 170 180 190 200
210 220 230 240 250 260 270 280 290 300	,179 ,164 ,151 ,139 ,129 ,119 ,111 ,103 ,097 ,093	,178 ,163 ,150 ,138 ,128 ,118 ,110 ,103 ,096	,176 ,161 ,148 ,137 ,127 ,118 ,109 ,102 ,095	,174 ,160 ,147 ,136 ,126 ,117 ,109 ,101 ,095	,173 ,159 ,146 ,135 ,125 ,116 ,108 ,101 ,094	,171 ,157 ,145 ,134 ,124 ,115 ,107 ,100 ,094	,170 ,156 ,144 ,133 ,123 ,114 ,106 ,099 ,093	,168 ,155 ,142 ,132 ,122 ,113 ,106 ,099 ,092	,167 ,153 ,141 ,131 ,121 ,113 ,105 ,098 ,092	,165 ,152 ,140 ,130 ,120 ,112 ,104 ,097 ,091	210 220 230 250 260 270 280 290 300

6)

Im Bereich $\lambda \leq 50$ ist mit größeren Abweichungen zu rechnen.

4.4.2 $\sigma_F = 240 \text{Nmm}^{-2}$, Kennlinie – b

λ	0	1	2	. 3	4	5	6	7'	8	9	λ
10 20 30 40 50 60 70 80 90 100	1,000 ,968 ,935 ,899 ,857 ,809 ,753 ,691 ,624 ,558	,997 ,965 ,932 ,895 ,853 ,804 ,747 ,684 ,617 ,551	,994 ,962 ,928 ,891 ,848 ,799 ,741 ,677 ,611 ,545	,991 ,959 ,925 ,887 .844 ,793 ,735 ,671 ,604 ,538	,987 ,955 ,921 ,883 ,788 ,729 ,664 ,597 ,532	,984 ,952 ,918 ,879 ,834 ,782 ,723 ,657 ,590 ,526	,981 ,949 ,914 ,875 ,829 ,777 ,716 ,651 ,584 ,519	,978 ,945 ,910 ,871 ,824 ,771 ,710 ,644 ,577 ,513	,975 ,942 ,907 ,866 ,819 ,765 ,704 ,637 ,571 ,507	,972 ,939 ,903 ,862 ,814 ,759 ,697 ,631 ,564 ,501	10 20 30 40 50 60 70 80 90 100
110 120 130 140 150 160 170 180 190 200	,495 ,439 ,389 ,346 ,309 ,277 ,249 ,225 ,205 ,187	,489 ,433 ,384 ,305 ,274 ,247 ,223 ,203 ,185	,483 ,428 ,380 ,338 ,302 ,271 ,244 ,221 ,201 ,183	,477 ,423 ,375 ,334 ,299 ,268 ,242 ,219 ,199 ,182	,472 ,418 ,371 ,330 ,295 ,265 ,239 ,217 ,197 ,180	,466 ,413 ,367 ,327 ,292 ,263 ,237 ,215 ,195 ,178	,460 ,408 ,362 ,323 ,289 ,260 ,234 ,213 ,193 ,177	,455 ,403 ,358 ,319 ,286 ,257 ,257 ,211 ,192 ,175	,449 ,398 ,354 ,216 ,283 ,254 ,209 ,190 ,174	,444 . ,394 ,350 ,312 ,280 ,252 ,228 ,207 ,188 ,172	110 120 130 140 150 160 170 180 190 200
210 220 230 240 250 260 270 280 290 300	,171 ,157 ,144 ,133 ,124 ,115 ,107 ,100 ,093 ,088	,169 ,155 ,143 ,132 ,123 ,114 ,106 ,099 , 093	,168 ,154 ,142 ,131 ,122 ,113 ,105 ,099 ,092	,166 ,153 ,141 ,130 ,121 ,112 ,105 ,098 ,092	,165 ,152 ,140 ,129 ,120 ,112 ,104 ,097 ,091	,163 ,150 ,139 ,128 ,119 ,111 ,103 ,097 ,090	,162 ,149 ,138 ,127 ,118 ,110 ,103 ,096 ,090	,161 ,148 ,137 ,126 ,117 ,109 ,102 ,095 ,089	,159 ,147 ,135 ,125 ,116 ,108 ,101 ,095 ,089	,158 ,145 ,134 ,124 ,116 ,108 ,101 ,094 ,088	210 220 230 240 250 260 270 280 290 300

7)

00 50 100 150 200 250 λ 300

Im Bereich $\lambda \leq 50$ ist mit größeren Abweichungen zu rechnen.

4.4.3 $\sigma_F = 240 \text{Nmm}^{-2}$, Kennlinie –	с
---	---------------	---

λ	0	1	2	ġ	4	5	6	7	8	9	·λ
10	1,000	,995	,991	,986	,982	,977	,973	,968	,964	,959	10
20	,955	,950	,946	,941	,936	,932	,927	,923	,918	,913	20
30	,909	,904	,899	,895	,890	,885	,880	,875	,870	,865	30
40	,860	,855	,850	,845	,840	,835	,830	,824	,819	,814	40
50	,808	,803	,797	,792	,786	,780	,775	,769	,763	,757	50
60	,751	,745	,739	,733	,727	,721	,715	,709	,703	,697	60
70	,690	,684	,678	,672	,665	,659	,653	,646	,640	,634	70
80	,627	,621	,614	,608	,602	,595	,589	,583	,577	,570	80
90	,564	,558	,552	,546	,540	,534	,528	,522	,516	,510	90
100	,504	,498	,493	,487	,482	,476	,471	,465	,460	,454	100
110	,449	,444	,439	,434	,429	,424	,419	,414	,409	,405	110
120	,400	,395	,391	,386	,382	,377	,373	,369	,365	,361	120
130	,357	,353	,349	,345	,341	,337	,333	,330	,326	,322	130
140	,319	,315	,212	,308	,305	,302	,299	,295	,292	,289	140
150	,286	,283	,280	,277	,274	,271	,268	,266	,263	,260	150
160	,258	,255	,252	,250	,247	,245	,242	,240	,238	,235	160
170	,233	,231	,228	,226	,224	,222	,220	,217	,215	,213	170
180	,211	,209	,207	,205	,204	,202	,200	,198	,196	,194	180
190	,193	,191	,189	,187	,186	,184	,182	,181	,179	,178	190
200	,176	,175	,173	,172	,170	,169	,167	,166	,164	,163	200
210 220 230 250 260 270 280 290 300	,162 ,149 ,137 ,127 ,118 ,110 ,102 ,096 ,090 ,084	,160 ,147 ,136 ,126 ,117 ,109 ,102 ,095 ,089	,159 ,146 ,135 ,125 ,116 ,108 ,101 ,095 ,089	,158 ,145 ,134 ,124 ,115 ,108 ,100 ,094 ,088	,156 ,144 ,133 ,123 ,115 ,107 ,100 ,093 ,088	,155 ,143 ,122 ,122 ,114 ,106 ,099 ,093 ,087	,154 ,142 ,131 ,122 ,113 ,105 ,098 ,092 ,086	,152 ,141 ,130 ,121 ,112 ,105 ,098 ,092 ,086	,151 ,139 ,129 ,120 ,111 ,104 ,097 ,091 ,085	,150 ,138 ,128 ,119 ,111 ,103 ,096 ,090 ,085	210 220 230 250 260 270 280 290 300

8)

Im Bereich $\lambda \leq 50$ ist mit größeren Abweichungen zu rechnen.
4.4.4 $\sigma_F = 300 \text{Nmm}^{-2}$, Kennlinie – a

λ	0.	1 .	2	3	. 4	5	. 6	7	8	9	λ
10 20 30 40 50 60 70 80 90 100	1,000 985 959 930 ,892 ,843 ,779 ,702 617 ,536	1,000 ,982 ,957 ,926 ,888 ,838 ,772 ,693 ,609 ,529	1,000 ,980 ,954 ,923 ,883 ,832 ,765 ,685 ,601 ,521	1,000 ,977 ,951 ,919 ,826 ,757 ,677 ,592 ,514	,999 ,975 ,948 ,916 ,874 ,820 ,750 ,668 ,584 ,506	,996 ,972 ,94 ,912 ,869 ,813 ,742 ,660 ,576 ,499	,994 ,970 ,942 ,908 ,865 ,807 ,734 ,651 ,568 ,492	,992 ,967 ,939 ,904 ,859 ,800 ,726 ,643 ,560 ,485	,989 ,965 ,936 ,900 ,854 ,793 ,718 ,634 ,552 ,478	,987 ,962 ,933 ,896 ,849 ,787 ,710 ,626 ,544 ,471	10 20 30 40 50 60 70 80 90 100
110 120 130 140 150 160 170 180 190 200	,434 ,403 ,351 ,308 ,272 ,242 ,216 ,194 ,175 ,159	,458 ,397 ,346 ,304 ,269 ,239 ,214 ,192 ,174 ,158	.451 ,392 ,342 ,300 ,266 ,236 ,211 ,190 ,172 ,156	,445 ,386 ,337 ,297 ,262 ,234 ,209 ,188 ,170 ,155	,438 ,381 ,333 ,259 ,259 ,231 ,207 ,186 ,169 ,153	,432 ,376 ,329 ,289 ,256 ,228 ,205 ,184 ,167 ,152	,426 ,371 ,324 ,286 ,253 ,226 ,202 ,182 ,165 ,150	, 420 ,366 ,320 ,282 ,250 ,223 ,200 ,181 ,164 ,149	,414 ,361 ,279 ,247 ,221 ,198 ,179 ,162 ,148	,408 ,356 ,212 ,275 ,244 ,218 ,196 ,177 ,161 ,146	110 120 130 140 150 160 170 180 190 200
210 220 230 250 260 270 280 290 300	,145 ,133 ,122 ,112 ,104 ,096 ,089 ,083 ,078 ,073	,144 ,132 ,121 ,111 ,103 ,095 ,089 ,083 ,077	,142 ,130 ,120 ,110 ,102 ,095 ,088 ,082 ,077	,141 ,129 ,119 ,110 ,101 ,094 ,088 ,082 ,076	,140 ,128 ,118 ,109 ,101 ,093 ,087 ,081 ,076	,139 ,127 ,117 ,108 ,100 ,093 ,086 ,081 ,075	,137 ,126 ,116 ,107 ,099 ,092 ,086 ,080 ,075	,136 ,125 ,115 ,106 ,098 ,091 ,085 ,079 ,074	,135 ,124 ,114 ,105 ,098 ,091 ,085 ,079 ,074	,134 ,123 ,113 ,105 ,097 ,090 ,084 ,078 ,073	210 220 230 240 250 260 270 280 290 300

⁹)

0₀ 50 100 150 200 250 λ 300

4.4.5	$\sigma_F =$	300Nmm ⁻	² , Kennl	linie –	b
-------	--------------	---------------------	----------------------	---------	---

λ	0	1	2	3	4	5	6	.7	8	9	λ
10 20 30 40 50 60 70 80 90 100	,996 ,961 ,923 ,880 ,830 ,770 ,702 ,628 ,553 ,484	,993 ,957 ,919 ,875 ,824 ,764 ,695 ,620 ,546 ,478	,989 ,953 ,915 ,871 ,819 ,757 ,687 ,613 ,539 ,471	,986 ,950 ,911 ,866 ,813 ,751 ,680 ,605 ,532 ,465	,982 ,946 ,906 ,861 ,807 ,744 ,673 ,598 ,525 ,459	,979 ,942 ,902 ,856 ,801 ,737 ,665 ,590 ,518 ,453	,975 ,938 ,898 ,851 ,795 ,730 ,658 ,583 ,511 ,447	,971 ,935 ,894 ,846 ,789 ,723 ,650 ,575 ,504 ,441	,968 ,931 ,889 ,841 ,783 ,716 ,643 ,568 ,498 ,435	,964 ,927 ,885 ,835 ,777 ,709 ,635 ,561 ,491 ,429	10 20 30 40 50 60 70 80 90 100
110 120 130 140 150 160 170 180 190 200	,423 ,370 ,325 ,287 ,255 ,228 ,204 ,184 ,167 ,152	,417 ,365 ,321 ,284 ,252 ,225 ,202 ,183 ,165 ,151	,412 ,361 ,217 ,281 ,249 ,223 ,200 ,181 ,164 ,149	,406 ,356 ,313 ,277 ,247 ,220 ,198 ,179 ,162 ,148	,401 ,351 ,309 ,274 ,244 ,218 ,196 ,177 ,161 ,147	,396 ,347 ,306 ,271 ,241 ,216 ,194 ,175 ,159 ,145	,390 ,342 ,267 ,238 ,213 ,192 ,174 ,158 ,144	,385 ,338 ,298 ,264 ,236 ,211 ,190 ,172 ,156 ,143	,380 ,334 ,294 ,261 ,233 ,209 ,188 ,170 ,155 ,141	,375 ,330 ,291 ,258 ,230 ,207 ,186 ,169 ,153 ,140	110 120 130 140 150 160 170 180 190 200
210 220 230 250 260 270 280 290 300	,139 ,127 ,117 ,108 ,100 ,093 ,087 ,081 ,076 ,071	,138 ,126 ,116 ,107 ,099 ,092 ,086 ,080 ,075	,136 ,125 ,115 ,107 ,099 ,092 ,085 ,080 ,075	,135 ,124 ,114 ,106 ,098 ,091 ,085 ,079 ,074	,134 ,123 ,113 ,105 ,097 ,090 ,084 ,079 - ,074	,133 ,122 ,113 ,104 ,096 ,090 ,084 ,078 ,073	,132 ,121 ,112 ,103 ,096 ,089 ,083 ,078 ,073	,131 ,120 ,111 ,102 ,095 ,088 ,082 ,077 ,072	,130 ,119 ,110 ,094 ,088 ,082 ,077 ,072	,128 ,118 ,109 ,101 ,094 ,087 ,081 ,076 ,071	210 220 230 250 260 270 280 290 300

¹⁰)

4.4.6 $\sigma_F = 300 \text{Nmm}^{-2}$, Kennlinie – c

λ	. 0	1	. 2	3	4	5	6	7	8	9	λ
10 20 30 40 50 60 70 80 90 100	,995 ,944 ,892 ,836 ,775 ,709 ,638 ,568 ,501 ,440	,989 ,939 ,887 ,880 ,769 ,702 ,631 ,561 ,494 ,434	,984 ,934 ,881 ,825 ,762 ,695 ,624 ,554 ,488 ,429	,979 ,929 ,876 ,819 ,756 ,688 ,617 ,547 ,482 ,423	,974 ,923 ,870 ,813 ,749 ,681 ,610 ,540 ,475 ,418	,969 ,918 ,865 ,806 ,743 ,674 ,603 ,534 ,469 ,412	,964 ,913 ,859 ,800 ,736 ,667 ,596 ,527 ,463 ,407	,959 ,908 ,854 ,794 ,729 ,660 ,589 ,589 ,520 ,457 ,402	,954 ,903 ,848 ,788 ,722 ,652 ,582 ,514 ,451 ,396	,949 ,897 ,842 ,782 ,715 ,645 ,575 ,575 ,446 ,391	10 20 30 40 50 60 70 80 90 100
110 120 130 140 150 160 170 180 190 200	,386 ,340 ,301 ,267 ,238 ,214 ,192 ,174 ,158 ,144	,381 ,336 ,297 ,264 ,236 ,211 ,190 ,172 ,157 ,143	,377 ,332 ,293 ,261 ,233 ,209 ,189 ,171 ,155 ,142	,372 ,328 ,290 ,258 ,230 ,207 ,187 ,169 ,154 ,141	.367 ,324 ,287 ,255 ,228 ,205 ,185 ,168 ,153 ,139	,362 ,320 ,283 ,252 ,225 ,203 ,183 ,166 ,151 ,138	, 358 ,316 ,280 ,229 ,221 ,181 ,164 ,150 ,137	,353 ,312 ,277 ,246 ,221 ,198 ,179 ,163 ,148 ,136	,349 ,308 ,273 ,244 ,218 ,196 ,178 ,161 ,147 ,135	,344 ,304 ,270 ,241 ,194 ,176 ,160 ,146 ,133	110 120 130 140 150 160 170 180 190 200
210 220 230 250 260 270 280 290 300	,132 ,122 ,112 ,104 ,096 ,089 ,083 ,078 ,073 ,068	,131 ,121 ,111 ,103 ,095 ,089 ,083 ,077 ,072	,130 ,120 ,110 ,102 ,095 ,088 ,082 ,077 ,072	,129 ,119 ,109 ,101 ,094 ,088 ,082 ,076 ,072	,128 ,118 ,109 ,101 ,093 ,087 ,081 ,076 ,071	,127 ,117 ,108 ,100 ,093 ,086 ,081 ,075 ,071	,126 ,116 ,107 ,099 ,092 ,086 ,080 ,075 ,070	,125 ,115 ,106 ,098 ,091 ,085 ,079 ,074 ,070	,124 ,114 ,105 ,098 ,091 ,085 ,079 ,074 ,069	,123 ,113 ,104 ,097 ,090 ,084 ,078 ,073 ,069	210 220 230 250 260 270 280 290 300

¹¹)

4.4.7	$\sigma_F = 360 \text{Nmm}^{-2}$, Kennlinie – a
	\circ_F ocortainin , rechardle u

λ.	0	1	2	3	4	_ 5	6	7	8	9.	λ
10 20 30 40 50 60 70 80 90 100	1,000 ,980 ,951 ,916 ,871 ,809 ,729 ,637 ,547 ,467	1,000 ,977 ,948 ,912 ,865 ,801 ,720 ,628 ,539 ,460	1,000 ,975 ,945 ,908 ,860 ,794 ,711 ,619 ,530 ,453	,998 ,972 ,942 ,904 ,854 ,786 ,702 ,610 ,522 ,446	,996 ,969 ,938 ,900 ,848 ,779 ,693 ,600 ,514 ,439	993 ,966 ,935 ,895 ,842 ,771 ,684 ,591 ,506 ,432	,990 ,963 ,931 ,836 ,763 ,674 ,582 ,498 ,425	,988 ,960 ,928 ,886 ,829 ,754 ,665 ,573 ,490 ,419	,985 ,958 ,924 ,881 ,823 ,746 ,656 ,565 ,482 ,412	,983 ,954 ,920 ,876 ,816 ,737 ,647 ,556 ,475 ,406	10 20 30 40 50 60 70 80 90 100
110 120 130 140 150 160 170 180 190 200	,400 ,344 ,299 ,261 ,230 ,204 ,182 ,163 ,147 ,134	,394 ,339 ,295 ,258 ,227 ,202 ,180 ,162 ,146 ,132	,388 ,335 ,291 ,255 ,224 ,199 ,178 ,160 ,145 ,131	,382 ,330 ,287 ,251 ,222 ,197 ,176 ,158 ,143 ,130	,376 ,325 ,283 ,248 ,219 ,195 ,174 ,157 ,142 ,129	,371 ,320 ,279 ,245 ,216 ,193 ,172 ,155 ,140 ,128	,365 ,316 ,275 ,242 ,214 ,190 ,171 ,154 ,139 ,126	,360 ,312 ,272 ,239 ,211 ,188 ,169 ,152 ,138 ,125	,355 ,307 ,268 ,236 ,209 ,186 ,167 ,150 ,136 ,124	,349 ,303 ,265 ,233 ,206 ,184 ,165 ,149 ,135 ,123	110 120 130 140 150 160 170 180 190 200
210 220 230 240 250 260 270 280 290 300	,122 ,111 ,102 ,094 ,087 ,081 ,075 ,070 ,065 ,061	,121 ,110 ,093 ,086 ,080 ,074 ,069 ,065	,120 ,109 ,101 ,093 ,086 ,079 ,074 ,069 ,064	,119 ,108 ,100 ,092 ,085 ,079 ,073 ,068 ,064	,117 ,108 ,099 ,091 ,084 ,078 ,073 ,068 ,063	,116 ,107 ,098 ,090 ,084 ,078 ,072 ,067 ,063	,115 ,106 ,097 ,090 ,083 ,077 ,072 ,067 ,063	,114 ,105 ,096 ,089 ,082 ,077 ,071 ,067 . ,062	,113 ,104 ,096 ,088 ,082 ,076 ,076 ,066 ,062	,112 ,103 ,095 ,088 ,081 ,075 ,070 ,066 ,061	210 220 230 240 250 260 270 280 290 300

¹²)

4.4.8 $\sigma_F = 360 \text{Nmm}^{-2}$, Kennlinie – b

λ	0	7 1	2	3	4	5	6	7	8	9	λ
10	,993	,989	,985	,981	,977	,974	,970	 "966 "925 "878 "822 "754 "677 "595 "516 "445 "384 	,962	,958	10
20	,954	,950	,946	,941	,937	,933	,929		,920	,916	20
30	,911	,907	,902	,897	,892	,888	,883		,872	,867	30
40	,862	,856	,851	,845	,840	,834	,828		,815	,809	40
50	,803	,796	,789	,783	,776	,769	,762		,747	,740	50
60	,732	,724	,717	,709	,701	,693	,685		,669	,661	60
70	,653	,644	,636	,628	,620	,611	,603		,587	,579	70
80	,571	,563	,555	,547	,539	,531	,524		,508	,501	80
90	,494	,486	,479	,472	,465	,458	,452		,439	,432	90
100	,426	,419	,413	,407	,401	,396	,390		,379	,373	100
1 10	,368	,363	,357	,352	,347	,343	,338	•,333	,328	,324	110
120	,319	,315	,311	,307	,302	,298	,294	,290	,287	,283	120
130	,279	,276	,272	,268	,265	,262	,258	,255	,252	,249	130
140	,246	,242	,239	,237	,234	,231	,228	,225	,223	,220	140
150	,217	,215	,212	,210	,207	,205	,203	,200	,198	,196	150
160	,194	,191	,189	,187	,185	,183	,181	,179	,177	,175	160
170	,173	,171	,170	,168	,166	,164	,163	,161	,159	,158	170
180	,156	,154	,153	,151	,150	,148	,147	;145	,144	,143	180
190	,141	,140	,139	,137	,136	,135	,133	,132	,131	,130	190
200	,128	,127	,126	,125	,124	,123	,121	,120	,119	,118	200
210 220 230 250 250 260 270 280 290 300	,117 ,107 ,099 ,091 ,084 ,078 ,073 ,068 ,063 ,059	,116 ,106 ,098 ,090 ,084 ,078 ,072 ,067 ,063	,115 ,106 ,097 ,090 ,083 ,077 ,072 ,067 ,063	,114 ,105 ,096 ,089 ,082 ,077 ,071 ,066 ,062	,113 ,104 ,096 ,088 ,082 ,076 ,071 ,066 ,062	,112 ,103 ,095 ,088 ,081 ,075 ,070 ,066 ,061	,111 ,102 ,094 ,087 ,081 ,075 ,070 ,065 ,061	,110 ,101 ,093 ,086 ,080 ,074 ,069 ,065 ,061	,109 ,100 ,093 ,086 ,079 ,074 ,069 ,064 ,060	,108 ,100 ,092 ,085 ,079 ,073 ,068 ,064 ,060	210 220 230 240 250 260 270 280 290 300

¹³)

250 λ 300

4.4.9 $\sigma_F = 360 \text{Nmm}^{-2}$,	Kennlinie – c
---	---------------

λ	0	1	2	3	4	5.	6	7	8	9	λ
10	,990	,984	,979	,973	,968	,962	,956	,951	,945	,940	10
20	,934	,929	,923	,917	,912	,906	,900	,894	,888	,882	20
30	,877	,871	,864	,858	,852	,846	,840	,833	,827	,821	30
40	,814	,807	,800	,793	,787	,780	,773	,766	,758	,751	40
50	,744	,737	,729	,722	,714	,707	,699	,692	,684	,676	50
60	,669	,661	,653	,645	,637	,630	,622	,614	,606	,599	60
70	,591	,583	,576	,568	,560	,553	,545	,538	,531	,523	70
80	,516	,509	,502	,495	,488	,481	,474	,468	,461	,454	80
90	,448	,442	,435	,429	,423	,4†7	,411	,405	,400	,394	90
100	,389	,383	,378	,373	,367	,362	,357	,352	,347	,343	100
110	,338	,333	,329	,324	,320	,316	,312	,307	,303	,299	110
120	,295	,292	,288	,284	,280	,277	,273	,270	,266	,263	120
130	,260	,256	,253	,250	,247	,244	,241	,238	,235	,232	130
140	,230	,227	,224	,221	,219	,216	,214	,211	,209	,206	140
150	,204	,202	,199	,197	,195	,193	,191	,189	,187	,184	150
160	,182	,180	,179	,177	,175	,173	,171	,169	,167	,166	160
170	,164	,162	,161	,159	,157	,156	,154	,153	,151	,150	170
180	,148	,147	,145	,144	,142	,141	,140	,138	,137	,136	180
190	,134	,133	,132	,131	,129	,128	,127	,126	,125	,124	190
200	,122	,121	,120	,119	,118	,117	,116	,115	,114	,113	200
210 220 230 240 250 260 270 280 290 300	,112 ,103 ,095 ,088 ,081 ,075 ,070 ,066 ,061 ,058	,111 ,102 ,094 ,087 ,081 ,075 ,070 ,065 ,061	,110 ,093 ,086 ,080 ,074 ,069 ,065 ,061	,109 ,100 ,093 ,086 ,079 ,074 ,069 ,064 ,060	,108 ,100 ,092 ,085 ,079 ,073 ,068 ,064 ,060	,099 ,091 ,084 ,078 ,073 ,068 ,063 ,059	,106 ,098 ,090 ,084 ,078 ,072 ,067 ,063 ,059	,105 ,097 ,090 ,083 ,077 ,072 ,067 ,063 ,059	,105 ,096 ,089 ,082 ,077 ,071 ,067 ,067 ,058	,104 ,096 ,088 ,082 ,076 ,076 ,066 ,062 ,058	210 220 230 250 260 270 280 290 300

¹⁴)

Im Bereich $\lambda \leq 50$ ist mit größeren Abweichungen zu rechnen.

4.4.10 $\sigma_F = 450 \text{Nmm}^{-2}$, Kennlinie – a

λ	0	1	2	3	4	5	6	7	8	9	÷λ
10 20 30 40 50 60 70 80 90 100	1,000 ,974 ,940 ,836 ,754 ,653 ,552 ,463 ,389	1,000 ,971 ,936 ,891 ,829 ,744 ,643 ,542 ,455 ,383	,997 ,967 ,932 ,886 ,822 ,735 ,633 ,533 ,447 ,376	,994 ,964 ,928 ,880 ,814 ,725 ,622 ,524 ,439 ,370	,991 ,961 ,924 ,875 ,806 ,715 ,612 ,514 ,431 ,364	,988 ,958 ,920 ,869 ,798 ,705 ,602 ,505 ,424 ,358	,986 ,954 ,915 ,863 ,789 ,695 ,592 ,497 ,417 ,352	,983 ,951 ,911 ,857 ,781 ,684 ,582 ,488 ,410 ,346	,980 ,947 ,906 ,850 ,772 ,674 ,572 ,479 ,403 ,341	,977 ,944 ,901 ,843 ,763 ,664 ,562 ,471 ,396 ,335	10 20 30 40 50 60 70 80 90 100
110 120 130 150 160 170 180 190 200	,330 ,282 ,244 ,213 ,187 ,165 ,147 ,132 ,119 ,108	325 ,278 ,240 ,210 ,184 ,163 ,146 ,181 ,118 ,107	,319 ,274 ,237 ,207 ,182 ,162 ,144 ,129 ,117 ,106	,314 ,270 ,234 ,180 ,160 ,143 ,128 ,116 ,105	,310 ,266 ,231 ,202 ,178 ,158 ,141 ,127 ,114 ,104	.305 .262 .227 .199 .176 .156 .139 .125 .113 .103	, 300 ,258 ,224 ,197 ,173 ,154 ,138 ,124 ,112 ,102	,295 ,255 ,221 ,194 ,171 ,152 ,136 ,123 ,111 ,101	,291 ,251 ,218 ,192 ,169 ,151 ,135 ,122 ,110 ,100	,287 ,247 ,215 ,189 ,167 ,149 ,134 ,120 ,109 ,099	110 120 130 140 150 160 170 180 190 200
210 220 230 250 260 270 280 290 300	,098 ,090 ,082 ,070 ,070 ,065 ,060 ,056 ,052 ,049	097 089 082 075 070 064 060 056 052	,096 ,088 ,081 ,075 ,069 ,064 ,059 ,055 ,052	,096 ,087 ,080 ,074 ,068 ,063 ,059 ,055 ,051	,095 ,087 ,080 ,073 ,068 ,063 ,059 ,055 ,051	,094 ,086 ,079 ,073 ,067 ,063 ,058 ,054 ,051	,093 ,085 ,078 ,072 ,067 ,062 ,058 ,054 ,050	,092 ,085 ,078 ,072 ,066 ,062 ,057 ,054 ,050	,091 ,084 ,077 ,071 ,066 ,061 ,057 ,053 .050	,091 ,083 ,076 ,071 ,065 ,061 ,057 ,053 ,049	210 220 230 250 260 270 280 290 300

¹⁵)

— t

λ	0	1	2	3	4	5	6	7	8	9	λ
10 20 30 40 50 60 70 80 90 100	,988 ,944 ,895 ,835 ,762 ,676 ,585 ,498 ,422 ,358	,984 ,939 ,889 ,829 ,754 ,667 ,576 ,490 - ,415 ,353	,980 ,935 ,884 ,822 ,746 ,658 ,567 ,482 ,408 ,347	,975 ,930 ,878 ,815 ,738 ,649 ,558 ,474 ,402 ,342	.971 ,925 ,872 ,808 ,729 ,640 ,549 ,466 ,395 ,336	,967 ,920 ,867 ,801 ,721 ,631 ,540 ,458 ,389 ,331	,962 ,915 ,861 ,793 ,712 ,621 ,531 ,451 ,382 ,326	,958 ,910 ,854 ,786 ,703 ,612 ,523 ,443 ,376 ,321	,953 ,905 ,848 ,778 ,694 ,603 ,514 ,436 ,370 ,316	,949 ,900 ,842 ,770 ,685 ,594 ,506 ,429 ,364 ,311	10 20 30 40 50 60 70 80 90 100
110 120 130 140 150 160 170 180 190 200	,307 ,264 ,230 ,201 ,178 ,158 ,141 ,127 ,115 ,104	,302 ,261 ,227 ,199 ,176 ,156 ,140 ,126 ,114 ,103	,298 ,257 ,224 ,196 ,173 ,154 ,138 ,124 ,112 ,102	,293 ,253 ,221 ,194 ,171 ,153 ,137 ,123 ,111 ,101	,289 ,250 ,218 ,169 ,151 ,135 ,122 ,110 ,100	,284 ,246 ,215 ,189 ,167 ,149 ,134 ,121 ,109 ,099	,280 ,243 ,212 ,165 ,148 ,132 ,119 ,108 ,098	,276 ,239 ,209 ,184 ,163 ,146 ,131 ;118 ,107 ,098	,272 ,236 ,207 ,182 ,162 ,144 ,130 ,117 ,106 ,097	,268 ,233 ,204 ,160 ,143 ,128 ,116 ,105 ,096	110 120 130 140 150 160 170 180 190 200
210 220 230 250 260 270 280 290 300	,095 ,087 ,080 ,074 ,068 ,063 ,059 ,055 ,051 ,048	,094 ,086 ,079 ,073 ,068 ,063 ,058 ,054 ,051	,093 ,085 ,079 ,072 ,067 ,062 ,058 ,054 ,051	,092 ,085 ,078 ,072 ,067 ,062 ,058 ,054 ,050	,092 ,084 ,077 ,071 ,066 ,061 ,057 ,053 ,050	,091 ,083 ,077 ,071 ,066 ,061 ,057 ,053 ,050	,090 ,083 ,076 ,070 ,065 ,060 ,056 ,053 ,049	,089 ,082 ,075 ,070 ,065 ,060 ,056 ,052 ,049	,088 ,081 ,075 ,069 ,064 ,060 ,056 ,052 ,049	,088 ,081 ,074 ,069 ,064 ,059 ,055 ,052 ,048	210 220 230 240 250 260 270 280 290 300

¹⁶)

4.4.12 $\sigma_F = 450 \text{Nmm}^{-2}$, Kennlinie – c

λ	0	- 1	2	3	4	5	6	7	8	9	λ
10 20 30 40 50 60 70 80 90 100	,983 ,921 ,855 ,782 ,700 ,613 ,529 ,452 ,385 ,330	,977 ,915 ,848 ,774 ,691 ,605 ,520 ,444 ,379 ,325	,971 ,908 ,841 ,766 ,683 ,596 ,512 ,437 ,373 ,320	,965 ,902 ,834 ,758 ,674 ,587 ,504 ,430 ,367 - ,315	,958 ,895 ,827 ,750 ,666 ,579 ,497 ,424 ,362 ,310	,952 ,889 ,819 ,742 ,657 ,570 ,489 ,417 ,356 ,306	,946 ,882 ,734 ,648 ,562 ,481 ,410 ,351 ,301	,940 ,875 ,805 ,725 ,640 ,553 ,474 ,404 ,345 ,297	,933 ,869 ,797 ,717 ,631 ,545 ,466 ,398 ,340 ,293	,927 ,862 ,789 ,708 ,622 ,537 ,459 ,391 ,335 ,288	10 20 30 40 50 60 70 80 90 100
110 120 130 140 150 160 170 180 190 200	,284 ,246 ,215 ,190 ,168 ,150 ,134 ,121 ,110 ,100	,280 ,243 ,213 ,166 ,148 ,133 ,120 ,109 ,099	,276 ,240 ,210 ,185 ,164 ,146 ,132 ,119 ,108 ,098	,272 ,237 ,207 ,183 ,162 ,145 ,130 ,118 ,107 ,097	,268 ,233 ,205 ,160 ,143 ,129 ,116 ,106 ,096	,264 ,230 ,202 ,178 ,159 ,142 ,127 ,115 ,105 ,095	,261 ,227 ,199 ,176 ,157 ,140 ,126 ,114 ,104 ,095	,257 ,224 ,197 ,174 ,155 ,139 ,125 ,113 ,103 ,094	,253 ,221 ,194 ,172 ,153 ,137 ,124 ,112 ,102 ,093	,250 ,218 ,192 ,151 ,136 ,122 ,111 ,101 ,092	110 120 130 140 150 160 170 180 190 200
210 220 230 240 250 260 270 280 290 300	,091 ,084 ,077 ,071 ,066 ,061 ,057 ,053 ,050 ,047	,090 ,083 ,076 ,071 ,065 ,061 ,057 ,053 ,049	,090 ,082 ,076 ,070 ,065 ,060 ,056 ,052 ,049	,089 ,082 ,075 ,069 ,064 ,060 ,056 ,052 ,049	,088 ,081 ,075 ,069 ,064 ,059 ,055 ,055 ,052 ,048	,087 ,080 ,074 ,068 ;063 ,059 ,055 ,051 ,048	,087 ,080 ,073 ,068 ,063 ,059 ,055 ,051 ,048	,086 ,079 ,073 ,067 ,063 ,058 ,054 ,051 ,048	,085 ,078 ,072 ,067 ,062 ,058 ,054 ,050 ,047	,084 ,078 ,072 ,066 ,062 ,057 ,054 ,050 ,047	210 220 230 250 260 270 280 290 300

¹⁷)

 $\operatorname{LAT}_{E} X 2_{\varepsilon}$

4 Anhang

2.3 Das Omega- Verfahren - Nach DIN 4114

Das Omega-Verfahren nach DIN 4114

Das ω -Verfahren.

Dipl.-Ing. Björnstjerne Zindler, M.Sc.

https://www.Zenithpoint.de

Erstellt: 09. Mai 2012 - Letzte Revision: 27. Januar 2023

Inhaltsverzeichnis

1	Das	Omega-Verfahren im Allgemeinen	3
2	Das	Omega-Verfahren im Besonderen	4
3	Beis	spiel für eine Anwendung des Omega-Verfahrens	5
	3.1	Bemessung	5
	3.2	Nachweis	6
4	Anh	lang	7
	4.1	Anhang a: ω -Tabellen nach TGL 0-4114 (DIN 4114)	7
	4.2	Anhang b: ω -Regressionspolynome nach TGL 0-4114 (DIN 4114)	9
	4.3	Anhang c: Zulässige Spannungen	12
	4.4	Anhang d: Tetmajer-Parabel oder Tetmajer-Gerade	13
		4.4.1 Vorbetrachtungen	14
		4.4.2 Modell 1	15
		4.4.3 Modell 2	17
		4.4.4 Modell 3	19
		4.4.5 Validierung	21
		4.4.6 Zusammenfassung	22
		4.4.7 Modell 4	23
	4.5	Anhang e: Historische Tetmajer- und ω -Werte	25
	4.6	Anhang f: Tetmajer-Koeffizienten k_1 und k_2	26

Literatur

- [fbb] fbb.fh-darmstadt.de, jetzt fbb.h-da.de. Das Omega-Verfahren.
- [Ist03] István Szabó, Einführung in die Technische Mechanik. Knicken, 8. neu bearbeitete Auflage 1975 Nachdruck 2003. ISBN 3-540-44248-0.
- [Kar] Karlheinz Kabus. Mechanik und Festigkeitslehre.
- [Kni] Knicken nach Euler-Tetmajer, das Lambda-Verfahren. Dipl.-Ing. Björnstjerne Zindler, M.Sc.
- [Staa] Stahlbau; Stabilitätsfälle (Knickung, Kippung, Beulung). DIN 4114.
- [Stab] Stahlbau; Stabilitätsfälle (Knickung, Kippung, Beulung). TGL 0-4114.

1 Das Omega-Verfahren im Allgemeinen

Das ω -Verfahren wurde von der damaligen Deutschen Reichsbahn für die eigenen Stahlbrücken aus Baustahl entwickelt und ist in der DIN 4114 festgelegt (DIN ist zurückgezogen!). Es liefert einen sehr einfachen Nachweis der Knicksicherheit.

In Abhängigkeit vom Schlankheitsgrad λ werden die Knickzahlen ω in zwei Tabellen für die Werkstoffe St37¹ und St52² dargestellt und so der Nachweis durchgeführt.

Schlankheitsgrade von

- kleiner 20 bedingen keine Notwendigkeit eines (Knick)Nachweises³,
- größer 250 sind unzulässig und der Nachweis ist a-priori negativ.

Die als ω -Zahlen genannten Knickwerte liegen zwischen 1 und 10,55 bei St37.

Der Nachweis hat folgende Form⁴:

$$\sigma_k = \omega \cdot \frac{F_k}{A} \le \sigma_{zul}$$

Der Wert von σ_{zul} entspricht der zulässigen Druckspannung für den entsprechenden Werkstoff im zugehörigen Lastfall.

Der große Vorteil des Verfahrens liegt in der Tatsache, dass der Knicknachweis auf einen einfachen Spannungsnachweis mit Druckkräften reduziert wird. In den ω -Zahlen ist eine Knicksicherheit von 1,3 bis 1,5 eingearbeitet.

Sollten keine Tafeln der ω -Zahlen zur Verfügung stehen, können für den Werkstoff St37 die ω -Zahlen näherungsweise⁵nach der folgenden Formel bestimmt werden:

$$\omega \approx 1 + \frac{\lambda}{728} + \frac{\lambda^2}{153^2} + \frac{\lambda^3}{143^3} \qquad \text{für} \qquad 20 \le \lambda \le 115$$

Und:

$$\omega \approx rac{\lambda^2}{77^2}$$
 für $115 < \lambda \le 250$

Das Verfahren wurde zwischenzeitlich durch andere und genauere Verfahren ersetzt, besitzt jedoch durch seine Anschaulichkeit noch eine gewissen Bedeutung in der Ausbildung von Ingenieuren.

 1 frühere Bezeichnung für S235JR+AR, S235JRG2, 1.0036 bis 1.0038, Fe360B, äquivalent zu St38 nach TGL 0-4114 2 frühere Bezeichnung für S355J2+N, S355J2G3, 1.0577 bzw. 1.0570, Fe510D1

³das entbindet nicht von weiteren eventuell notwendigen Nachweisen, wie Kippen, Beulen, ...

⁴Nachweis gilt für *Einteilige Druckstäbe von gleichbleibendem Querschnitt*. Neben anderen ist noch der Nachweis für *Gerade, planmäßig außermittig gedrückte Stäbe von gleichbleibendem Querschnitt* interessant. Sind die Abstände Schwerpunkt zu Biegezugrand und Schwerpunkt zu Biegedruckrand gleich $e_z = e_d$ oder gilt $e_z < e_d$, lautet der Nachweis wie folgt:

$$\sigma_k = \omega \cdot \frac{F_k}{A} + 0, 9 \cdot \frac{F_k \cdot e}{W_d} \le \sigma_{zul}$$

Wobei e die Außermittigkeit darstellt und W_d das Widerstandsmoment zur Druckseite. Bei Querschnitten, deren Schwerpunkt dem Biegedruckrand näher als dem Biegezugrand liegt $e_z > e_d$ muss **zusätzlich** nachgewiesen werden:

$$\sigma_k = \omega \cdot \frac{F_k}{A} + \frac{300 + 2 \cdot \lambda}{1000} \cdot \frac{F_k \cdot e}{W_z} \le \sigma_{zul}$$

⁵Hochgenaue Regressionspolynome im Anhang c.

[Ist03][Staa]

Omega-Verfahren I

2 Das Omega-Verfahren im Besonderen

[fbb][Staa] Omega-Verfahren II

In der Praxis ist das ω -Verfahren im Holz- und im Stahlbau zur Behandlung des Knickproblems üblich. Beim ω -Verfahren wird der Begriff der Schlankheit λ verwendet:

$$\lambda = \frac{s_k}{i}$$

hierbei ist *i* der Trägheitsradius, der sich aus $i = \sqrt{I/A}$ (*I* = Trägheitsmoment, *A* = Fläche) ergibt.

Jedem Schlankheitswert λ ist ein bestimmter ω -Wert zugeordnet, der aus Tabellen entnommen werden kann. Beim ω -Verfahren wird die Tragfähigkeit des Stabes reduzierende Wirkung des Knickens dadurch erfasst, dass die zulässige Spannung σ_{zul} durch einen Faktor ω reduziert wird. Der Spannungsnachweis kann daher durchgeführt werden über:

$$\sigma_{vorh} \le \frac{\sigma_{zul}}{\omega}$$

5

3 Beispiel für eine Anwendung des Omega-Verfahrens

3.1 Bemessung

Gegeben ist ein Profil folgender Form, eine Stablänge 500mm, ein Knickfall 2 nach Euler und eine Beispiel einwirkende Kraft von 120KN. Die Trägheitsmomente sind berechenbar über:

Bemessung

$$I_1 = 2 \cdot \frac{40^3 \cdot 4}{12} + \frac{8^3 \cdot (50 - 2 \cdot 4)}{12} = 44.459 \text{mm}^4 = I_{\min}$$

Und:

$$I_2 = 2 \cdot \frac{40 \cdot 4^3 + 40 \cdot 4 \cdot \left(\frac{50}{2} - \frac{4}{2}\right)}{12} + \frac{8 \cdot \left(50 - 2 \cdot 4\right)^3}{12} = 50.432 \text{mm}^4 = I_{\text{max}}$$

Der dazugehörige Trägheitsradius beträgt:

$$i_{\min} = \sqrt{\frac{44.459}{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8}} = 8,23 \text{mm}$$

Für den angenommenen Knickfall 2 nach Euler (gelenkig, gelenkig) ergibt sich eine Knicklänge s_k aus der gewählten Stablänge l = 500mm von:

$$s_k = \frac{l}{1} = \frac{500}{1} = 500$$
mm

Die Schlankheit λ kann berechnet werden:

Der dazu gehörige
$$\omega$$
-Wert:

$$\omega \approx 1 + \frac{60,75}{728} + \frac{60,75^2}{153^2} + \frac{60,75^3}{143^3} = 1,31$$

 $\lambda = \frac{s_k}{i_{\min}} = \frac{500}{8,23} = 60,75$

Die zulässige Belastung F_k ist damit definiert:

$$F_k \le \frac{A}{\omega} \cdot \sigma_{zul} = \frac{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8}{1,31} \cdot 240 = 120 \text{KN}$$

Bei einer Profilbeanspruchung mit F = 120KN kommt es in diesem zu einer vorhandenen Spannung σ_{vorh} von:

$$\sigma_{vorh} = \frac{F}{A} = \frac{120.000}{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8} = 183 \frac{N}{mm^2}$$

[Kar][Staa]

3.2 Nachweis

• Knicken

Nachweise

Der Nachweis auf Knicken kann nun durchgeführt werden.

$$\sigma_{vorh} \le \frac{\sigma_{zul}}{\omega}$$

 \Rightarrow

$$183\frac{N}{mm^2} \le \frac{240}{1,31} = 183\frac{N}{mm^2}$$

Damit ist der Nachweis erfüllt. Der Knickstab ist voll ausgelastet.

• Druck

$$\sigma_{vorh} = \frac{120000}{656} = \frac{F}{A} = 183 \frac{N}{mm^2} > 160 \frac{N}{mm^2} = \sigma_{zul}$$

Nicht erfüllt!

Das Profil ist zu 14% überlastet, da laut DIN 4114 mit einer verminderten zulässigen Spannung gerechnet werden muss. 6

 $^{^{6}}$ Für Lastfall HZ: $160 \frac{\text{N}}{\text{mm}^{2}}$. Für Lastfall H: $140 \frac{\text{N}}{\text{mm}^{2}}$

4 Anhang

4.1 Anhang a: ω -Tabellen nach TGL 0-4114 (DIN 4114)

Anhänge [Stab]

TGLs⁷ der Form 0-xyz entsprechen der DIN xyz. TGLs unterstehen keiner Beschränkung (mehr), wenn Inhalte genutzt werden.

	Tabelle 1: Knickzahlen ω für St 38										
λ	0	1	2	3	4	5	6	7	8	9	λ
20	1,04	1,04	1,04	1,05	1,05	1,06	1,06	1,07	1,07	1,08	20
30	1,08	1,09	1,09	1,10	1,10	1,11	1,11	1,12	1,13	1,13	30
40	1,14	1,14	1,15	1,16	1,16	1,17	1,18	1,19	1,19	1,20	40
50	1,21	1,22	1,23	1,23	1,24	1,25	1,26	1,27	1,28	1,29	50
60	1,30	1,31	1,32	1,33	1,34	1,35	1,36	1,37	1,39	1,40	60
70	1,41	1,42	1,44	1,45	1,46	1,48	1,49	1,50	1,52	1,53	70
80	1,55	1,56	1,58	1,59	1,61	1,62	1,64	1,66	1,68	1,69	80
90	1,71	1,73	1,74	1,76	1,78	1,80	1,82	1,84	1,86	1,88	90
100	1,90	1,92	1,94	1,96	1,98	2,00	2,02	2,05	2,07	2,09	100
110	2,11	2,14	2,16	2,18	2,21	2,23	2,27	2,31	2,35	2,39	110
120	2,43	2,47	2,51	2,55	2,60	2,64	2,68	2,72	2,77	2,81	120
130	2,85	2,90	2,94	2,99	3,03	3,08	3,12	3,17	3,22	3,26	130
140	3,31	3,36	3,41	3,45	3,50	3,55	3,60	3,65	3,70	3,75	140
150	3,80	3,85	3,9	3,95	4,00	4,06	4,11	4,16	4,22	4,27	150
160	4,32	4,38	4,43	4,49	4,54	4,60	4,65	4,71	4,77	4,82	160
170	4,88	4,94	5,00	5,05	5,11	5,17	5,23	5,29	5,35	5,41	170
180	5,47	5,53	5,59	5,66	5,72	5,76	5,84	5,91	5,97	6,03	180
190	6,10	6,16	6,23	6,29	6,36	6,42	6,49	6,55	6,62	6,69	190
200	6,75	6,82	6,89	6,96	7,03	7,10	7,17	7,24	7,31	7,38	200
210	7,45	7,52	7,59	7,66	7,73	7,81	7,88	7,95	8,03	8,10	210
220	8,17	8,25	8,32	8,40	8,47	8,55	8,63	8,70	8,78	8,86	220
230	8,93	9,01	9,09	9,17	9,25	9,33	9,41	9,49	9,57	9,65	230
240	9,73	9,81	9,89	9,97	10,05	10,14	10,22	10,3	10,39	10,47	240
250	10,55										250

	Tabelle 1a: Knickzahlen ω für St 38 bei einteiligen Druckstäben aus Rundrohren										
λ	0	1	2	3	4	5	6	7	8	9	λ
20	1,00	1,00	1,00	1,00	1,01	1,01	1,01	1,02	1,02	1,02	20
30	1,03	1,03	1,04	1,04	1,04	1,05	1,05	1,05	1,06	1,06	30
40	1,03	1,03	1,04	1,04	1,04	1,05	1,05	1,05	1,06	1,06	40
50	1,12	1,13	1,13	1,14	1,15	1,15	1,16	1,17	1,17	1,18	50
60	1,19	1,20	1,20	1,21	1,22	1,23	1,24	1,25	1,26	1,27	60
70	1,28	1,29	1,30	1,31	1,32	1,33	1,34	1,35	1,36	1,37	70
80	1,39	1,40	1,41	1,42	1,44	1,46	1,47	1,48	1,50	1,51	80
90	1,53	1,54	1,56	1,58	1,59	1,61	1,63	1,64	1,66	1,68	90
100	1,70	1,73	1,76	1,79	1,83	1,87	1,90	1,94	1,97	2,01	100
110	2,05	2,08	2,12	2,16	2,20	2,23	weit	er wie iı	n Tabello	e 1	110

⁷Die Technischen Normen, Gütevorschriften und Lieferbedingungen waren von 1955 bis 1990 in der DDR verbindliche Industriestandards.

	Tabelle 2a: Knickzahlen ω für St 52										
λ	0	1	2	3	4	5	6	7	8	9	λ
20	1,06	1,06	1,07	1,07	1,08	1,08	1,09	1,09	1,10	1,11	20
30	1,11	1,12	1,12	1,13	1,14	1,15	1,15	1,16	1,17	1,18	30
40	1,19	1,19	1,20	1,21	1,22	1,23	1,24	1,25	1,26	1,27	40
50	1,28	1,30	1,31	1,32	1,33	1,35	1,36	1,37	1,39	1,40	50
60	1,41	1,43	1,44	1,46	1,48	1,49	1,51	1,53	1,54	1,56	60
70	1,58	1,60	1,62	1,64	1,66	1,68	1,70	1,72	1,74	1,77	70
80	1,79	1,81	1,83	1,86	1,88	1,91	1,93	1,95	1,98	2,01	80
90	2,05	2,10	2,14	2,19	2,24	2,28	2,33	2,38	2,43	2,48	90
100	2,53	2,58	2,64	2,69	2,74	2,79	2,85	2,90	2,95	3,01	100
110	3,05	3,12	3,18	3,23	3,29	3,35	3,41	3,47	3,53	3,59	110
120	3,65	3,71	3,77	3,83	3,89	3,96	4,02	4,09	4,15	4,22	120
130	4,28	4,35	4,41	4,48	4,55	4,62	4,69	4,75	4,82	4,89	130
140	4,96	5,04	5,11	5,18	5,25	5,33	5,40	5,47	5,55	5,62	140
150	5,70	5,78	5,85	5,93	6,01	6,09	6,16	6,24	6,32	6,40	150
160	6,48	6,57	6,65	6,73	6,81	6,90	6,98	7,06	7,15	7,23	160
170	7,32	7,41	7,49	7,58	7,67	7,76	7,85	7,94	8,03	8,12	170
180	8,21	8,30	8,39	8,48	8,58	8,67	8,76	8,86	8,95	9,05	180
190	9,14	9,24	9,34	9,44	9,53	9,63	9,73	9,83	9,93	10,03	190
200	10,13	10,23	10,34	10,44	10,54	10,65	10,75	10,85	10,96	11,06	200
210	11,17	11,28	11,38	11,49	11,60	11,71	11,82	11,93	12,04	12,15	210
220	12,26	12,37	12,48	12,60	12,71	12,82	12,94	13,05	13,17	13,28	220
230	13,40	13,52	13,63	13,75	13,87	13,99	14,11	14,23	14,35	14,47	230
240	14,59	14,71	14,83	14,96	15,08	15,20	15,33	15,45	15,58	15,71	240
250	15,83										250

	Tabelle 2a: Knickzahlen ω für St 52 bei einteiligen Druckstäben aus Rundrohren											
λ	0	1	2	3	4	5	6	7	8	9	λ	
20	1,02	1,02	1,02	1,03	1,03	1,03	1,04	1,04	1,05	1,05	20	
30	1,05	1,06	1,06	1,07	1,07	1,08	1,08	1,09	1,10	1,10	30	
40	1,11	1,11	1,12	1,13	1,13	1,14	1,15	1,16	1,16	1,17	40	
50	1,18	1,19	1,20	1,21	1,22	1,23	1,24	1,25	1,26	1,27	50	
60	1,28	1,30	1,31	1,32	1,33	1,35	1,36	1,38	1,39	1,41	60	
70	1,42	1,44	1,46	1,47	1,49	1,51	1,53	1,55	1,57	1,59	70	
80	1,62	1,66	1,71	1,75	1,79	1,83	1,88	1,92	1,97	2,01	80	
90	90 2,05 weiter wie in Tabelle 2										90	

Grundsätzlich gilt: Bei Zwischenwerten ist die nächsthöhere ω -Knickzahl zu nutzen.

4.2 Anhang b: ω-Regressionspolynome nach TGL 0-4114 (DIN 4114)

• ω_1 : Tabelle 1 - St38 all gemein für $20 \le \lambda \le 115$

$$\omega_1 = 0,99 + \frac{\lambda}{731,08} + \frac{\lambda^2}{155,86^2} + \frac{\lambda^3}{141,23^3}$$

• $\,\omega_2$: Tabelle 1 - St
38 allgemein für $115 < \lambda \leq 250$

 \Rightarrow

 \Rightarrow

 \Rightarrow

 $\omega_2 = \frac{\lambda^2}{76,95^2}$

• ω_3 : Tabelle 1a - St
38 einteilige Druckstäbe aus Rundrohren für $20 \leq \lambda \leq 115$

$$\omega_3 = 1,19 - \frac{\lambda}{51,09} + \frac{\lambda^2}{39,4^2} - \frac{\lambda^3}{51,06^3} + \frac{\lambda^4}{73,02^4}$$

 $\omega_{3} \approx 0,76 + \frac{\lambda}{67,38} - \frac{\lambda^{2}}{63,49^{2}} + \frac{\lambda^{3}}{79,57^{3}}$

• ω_4 : Tabelle 1a - St
38 einteilige Druckstäbe aus Rundrohren für 115 <
 $\lambda \leq 250$

$$\omega_4 = \frac{\lambda^2}{76,95^2}$$

• $\,\omega_{5}$: Tabelle 2 - St
52 all
gemein für $20 \leq \lambda \leq 90$

$$\omega_5 = 1 + \frac{\lambda}{475,67} + \frac{\lambda^2}{177,24^2} + \frac{\lambda^3}{107,03^3}$$

 \Rightarrow

 \Rightarrow

• $\,\omega_{6}$: Tabelle 2 - St
52 allgemein für $90 < \lambda \leq 250$

$$\omega_6 = \frac{\lambda^2}{62,85^2}$$

• ω_7 : Tabelle 2a - St
38 einteilige Druckstäbe aus Rundrohren für 20
 $\leq\lambda\leq90$

$$\omega_7 = 1,38 - \frac{\lambda}{25,3} + \frac{\lambda^2}{26,01^2} - \frac{\lambda^3}{36,18^3} + \frac{\lambda^4}{54,09^4}$$

 \Rightarrow

Ersatzweise:

$$\omega_7 \approx 0,68 + \frac{\lambda}{41,08} - \frac{\lambda^2}{44,01^2} + \frac{\lambda^3}{60,23^3}$$

• ω_8 : Tabelle 2a - einteilige Druckstäbe aus Rundrohren für $90 < \lambda \leq 250$

$$\omega_8 = \frac{\lambda^2}{62,85^2}$$

4.3 Anhang c: Zulässige Spannungen

Zulässige Spannunger	n für Bau	teile in I	N/mm ²	DIN 18800 Teil 1						
Spannungsart			Werkstoff und Lastfall							
		St	37	St	52	StE	460	StE	690	
		Н	HZ	Н	HZ	Н	HZ	Н	HZ	
Druck und Biege- druck für Stabilitäts- nachweis nach DIN 4114 Teil 1 und 2	$_{zul}\sigma_D$	140	160	210	240	275	310	410	460	
Druck und Bie- gedruck, Zug und Biegezug Vergleichs- spannung	$_{zul}\sigma$	160	180	240	270	310	350	410	460	
Schub	$_{zul} au$	92	104	139	156	180	200	240	270	

Allgemeine Kennwerte									
Stahl	Streckgrenze β_S N/mm ²	Elastizitätsmodul E N/mm ²	Schubmodul G N/mm ²						
Baustahl St 37	240*								
Baustahl St 52	360**	210.000	01.000						
Stahlguss GS 52	260	210.000	81.000						
Vergütungsstahl C 35 N	280								
Grauguss GG 15	-	100.000	38.000						
 * Für Materialdicken ≤100mm. ** Für Materialdicken ≤60mm. Für größere Dicken sind entsprechende Festlegungen zu treffen. 									

4.4 Anhang d: Tetmajer-Parabel oder Tetmajer-Gerade

Folgend eine kleine Betrachtung zu einer Besonderheit des ω -Verfahrens. Aufbauend auf den Verformungstheorien nach Euler und Tetmajer besitzt die Funktion eine hebbare Unstetigkeit im Übergang von Euler nach Tetmajer. Jedoch unterscheiden sich die Stellen, an der das zu beobachten ist.

Baustahl	λ_P	λ_F	Theorie	λ_F / λ_P
St 37	104	61	Tetmajer	0,587
St 37	115	-	Omega ^{lin}	-
St 37	115	68	Omega ^{par}	0,591
St 52	85	47	Tetmajer	0,553
St 52	90	-	Omega ^{lin}	-
St 52	97	54	Omega ^{par}	0,557

Vergleich der Tetmajer-Parabel nach Modell 3b und der Tetmajer-Gerade

Die Frage ist nun, warum diese Unterschiede? Es liegt die Vermutung nahe, dass die Tetmajer-Gerade auch eine gewisse Zeit lang im Stahlbau als Parabel betrachtet und erst später zur Geraden degradiert wurde. Auf Tetmajer aufbauende Theorien könnten demnach in dieser Zwischenzeit im Kern eine Parabel verwendet haben. Die Abweichungen scheinen sehr gering zu sein im Ergebnis, so dass man später die Theorien nicht noch einmal korrigiert hat. Solch eine Theorie könnte das Omega-Verfahren durchaus sein.

Im weiteren Verlauf soll versucht werden durch **modellbasiertes** Reverse-Engineering auf mathematischer Basis⁸ eine Parabel nachzubauen, die es ermöglicht, die Abweichungen zu erklären.

Die folgenden Zeilen sind daher lediglich Betrachtungen von akademischen Interesse. Es wird von der Vorlage der DIN in einigen Teilen der Vereinfachung wegen abgewichen.

[Kni]

⁸Der Begriff Reverse-Mathematics ist bereits anderweitig belegt.

4.4.1 Vorbetrachtungen

Benötigt werden die Arbeitsgleichungen.

Die Arbeitsgleichung lineares Polynom (Tetmajer-Gerade):

$$\sigma_L = a - b \cdot \lambda$$

Die Arbeitsgleichung quadratisches Polynom (Tetmajer-Parabel):

$$\sigma_P = \underbrace{(a_{\lambda=0} + K)}_{a} + b \cdot \lambda - c \cdot \lambda^2$$

Dabei ist K ein Term, welcher bei einer späteren Integration vonnöten ist. Der Wechsel der Koeffizientenvorzeichen ergibt sich aus den Notwendigkeiten der Regression.

Die Euler-Parabel ist gegeben.

$$\sigma_E = \frac{\pi^2}{\lambda^2} \cdot E$$

Damit ist K definiert.

$$\sigma_P = \sigma_E$$
 an der Stelle $\lambda = \lambda_P$

 \Rightarrow

$$K_P = \frac{\pi^2}{\lambda_P^2} \cdot E + c \cdot \lambda_P^2 - b \cdot \lambda_P - a_{\lambda=0}$$

Sowie:

$$\sigma_P = \sigma_L$$
 an der Stelle $\lambda = \lambda_F$

 \Rightarrow

 $K_F = c \cdot \lambda_F^2 - 2 \cdot b \cdot \lambda_F$

Für das Unstetigkeitsmodell gilt:

$$K_U = 0$$

Gesucht ist das Integral:

$$\int_{\lambda_F}^{\lambda_P} \left(\sigma_L - \sigma_P\right) \cdot d\lambda = \int_{\lambda_F}^{\lambda_P} \left(c \cdot \lambda^2 - 2 \cdot b \cdot \lambda - K\right) \cdot d\lambda$$

Der Minimalwert des Integrals ist gesucht in Abhängigkeit des Koeffizienten c und des Terms K.

$$\int_{\lambda_F}^{\lambda_P} \left(\sigma_L - \sigma_P \right) \cdot d\lambda = 0$$

Das Ergebnisse ist in den einzelnen Modellabschnitten dediziert dargestellt.

4.4.2 Modell 1 - Keine hebbaren Unstetigkeiten.

Soll die Parabel im Grafen so eingefügt sein, dass sie keine hebbaren Unstetigkeiten mehr aufweist, dann muss hier gelten:

$$K = 0$$

Sowie aus der Funktionsanalysis⁹ für die einzelnen Koeffizienten:

$$a = \sigma_F - \frac{\lambda_F^2}{\lambda_P^3} \cdot L$$
 $b = 2 \cdot \frac{\lambda_F}{\lambda_P^3} \cdot L$ $c = \frac{1}{\lambda_P^3} \cdot L$

Mit:

$$L = \pi^2 \cdot \frac{E}{\lambda_P - \lambda_F}$$

Für den Baustahl St 37 somit:

• Modell 1a:

$$\lambda_F = 61 \qquad \qquad \lambda_P = 104$$

$$\Rightarrow$$

$$L = \pi^2 \cdot \frac{210.000}{104 - 61} = 48.200$$

 \Rightarrow

$$a = 240 - \frac{61^2}{104^3} \cdot L = 80,56$$
 $b = 2 \cdot \frac{61}{104^3} \cdot L = 5,23$ $c = \frac{1}{104^3} \cdot L = 0,043$

$$\sigma = 80,56+5,23\cdot\lambda - 0,043\cdot\lambda^2$$

 \Rightarrow

Eine Lösung bedeutet nicht, dass sich die Euler- und Tetmajer-Funktion berühren müssen. Dazu würde es ein Freiheitsgrad mehr benötigen mit dem Term $d \cdot \lambda^3$. Das ist einsichtig, denn rein mathematisch gesehen ist die Aufgabe auch dann erfüllt, indem man die Unstetigkeit durch z.B. eine Sprungstelle ersetzt. Das ist hier der Fall.

⁹Parabelmaxima im Punkt $P_F(\lambda_F;\sigma_F)$ und gleicher Anstieg im Punkt $P_P(\lambda_P;\sigma_P)$

• Modell 1b:

$$\lambda_F = 61 \qquad \qquad \lambda_P = 115$$

Eine berechtigte Frage ist es, inwiefern sich diese Sprungstelle verändert, wenn man die Werte für λ_F und λ_P aus dem Omega-Verfahren nutzt.

$$L = \pi^{2} \cdot \frac{210.000}{115 - 61} = 38.382$$

$$\Rightarrow$$

$$a = 240 - \frac{61^{2}}{115^{3}} \cdot L = 146, 1 \qquad b = 2 \cdot \frac{61}{115^{3}} \cdot L = 3, 1 \qquad c = \frac{1}{115^{3}} \cdot L = 0,025$$

$$\Rightarrow$$

$$\sigma = 146, 1 + 3, 1 \cdot \lambda - 0,025 \cdot \lambda^{2}$$

Die Forderung der aufhebbaren Unstetigkeiten scheint nicht zielführend.

4.4.3 Modell 2 - Festhalten der Parabel im Punkt $P_F(\lambda_F; \sigma_F)$ und Optimierung auf minimaler Fläche zwischen Tetmajer-Parabel und -Gerade.

Mit:

$$K = (c \cdot \lambda_F - 2 \cdot b) \cdot \lambda_F$$

Der erste Koeffizient a wird von der Tetmajer-Geraden an der Stelle $\lambda = 0^{10}$ abgelesen. Damit ergibt sich dann mit $a = a_{\lambda=0} + K$:

$$a = a_{\lambda=0} - \frac{\lambda_F + 2 \cdot \lambda_P}{2 \cdot \lambda_F + \lambda_P} \cdot \lambda_F \cdot L \qquad \qquad b = L \qquad \qquad c = \frac{3}{2 \cdot \lambda_F + \lambda_P} \cdot L$$

Mit:

$$L = \frac{a_{\lambda=0} - \sigma_F}{\lambda_F}$$

Für den Baustahl St 37¹¹ somit:

• Modell 2a:

$$\lambda_F = 61$$
 $\lambda_P = 104$
 $L = \frac{310 - 240}{61} = 1,15$

 \Rightarrow

 \Rightarrow

$$\sigma = 226, 5 + 1, 15 \cdot \lambda - 0, 015 \cdot \lambda^2$$

 \Rightarrow

 10 Inhomogenität der Tetmajer-Geraden $^{11}a_{\lambda=0}=310$

4.4.4 Modell 3 - Festhalten der Parabel im Punkt $P_P(\lambda_P; \sigma_P)$ und Optimierung auf minimaler Fläche zwischen Tetmajer-Parabel und -Gerade.

Damit ist:

$$K = c \cdot \lambda_P^2 - b \cdot \lambda_P - a_{\lambda=0} + \left(\frac{\pi}{\lambda_P}\right)^2 \cdot E$$

Der erste Koeffizient a wird von der Tetmajer-Geraden an der Stelle $\lambda = 0$ abgelesen. Damit ergibt sich dann mit $a = a_0 + K$:

$$a = (c \cdot \lambda_P - b) \cdot \lambda_P + \left(\frac{\pi}{\lambda_P}\right)^2 \cdot E \qquad b = \frac{a_{\lambda=0} - \sigma_F}{\lambda_F} \qquad c = \frac{3}{\lambda_P^2} \cdot \frac{\pi^2 \cdot E - \sigma_F \cdot \lambda_P^2}{\lambda_F^2 + \lambda_F \cdot \lambda_P - 2 \cdot \lambda_P^2}$$

Für den Baustahl St 37 somit:

• Modell 3a:

$$\lambda_F = 61 \qquad \qquad \lambda_P = 104$$

 \Rightarrow

$$a = (0,01255 \cdot 104 - 1,15) \cdot 104 + \left(\frac{\pi}{104}\right)^2 \cdot 210000 = 207,7$$
$$b = \frac{310 - 240}{61} = 1,15$$

$$c = \frac{3}{104^2} \cdot \frac{\pi^2 \cdot 210000 - 240 \cdot 104^2}{61^2 + 61 \cdot 104 - 2 \cdot 104^2} = 0,01255$$

 \Rightarrow

$$\sigma = 207, 7+1, 15 \cdot \lambda - 0, 0126 \cdot \lambda^2$$

 \Rightarrow

• Modell 3b:

$$\lambda_F = 61 \qquad \qquad \lambda_P = 115$$

 \Rightarrow

$$a = (0,0159 \cdot 115 - 1,15) \cdot 115 + \left(\frac{\pi}{115}\right)^2 \cdot 210000 = 235,02$$

310 - 240

$$b = \frac{510 - 240}{61} = 1,15$$
$$c = \frac{3}{1152} \cdot \frac{\pi^2 \cdot 210000 - 240 \cdot 115^2}{612 \cdot 612} = 0,0159$$

$$c = \frac{3}{115^2} \cdot \frac{\pi^2 \cdot 210000 - 240 \cdot 115^2}{61^2 + 61 \cdot 115 - 2 \cdot 115^2} = 0,0159$$

 \Rightarrow

 \Rightarrow

$$\sigma = 235, 02 + 1, 15 \cdot \lambda - 0, 0159 \cdot \lambda^2$$

4.4.5 Validierung

Die Validierung wird durch das Prüfen der Ergebnisse für den Fall c = 0 realisiert. Es müssen nichttriviale, widerspruchsfreie Lösungen erscheinen. Grenzwertbetrachtungen werden nicht durchgeführt, diese Ergebnisse werden verworfen aus Erfordernissen der Praxis.

Die genannten Forderungen erfüllt nur das Modell 3b. Dort ergibt sich dann für den Koeffizienten c:

$$\pi^2 \cdot E - \sigma_F \cdot \lambda_P^2 = 0$$

 \Rightarrow

$$\lambda_P = \pi \cdot \sqrt{\frac{E}{\sigma_F}}$$

Die Tetmajer-Gerade gibt eine Definition vor, wo gilt:

$$\lambda_P^T \approx \pi \cdot \sqrt{\frac{1, 25 \cdot E}{\sigma_F^T}}$$

Damit ist der Sicherheitskoeffizient γ des Omega-Verfahrens definiert:

$$\lambda_P^{\omega} = \pi \cdot \sqrt{\frac{\gamma \cdot E}{\sigma_F^{\omega}}}$$

Den Wert für σ_F^{ω} kann man über eine genaue Betrachtung des Koeffizienten a ermitteln.

$$a = \left(\frac{\pi}{\lambda_P}\right)^2 \cdot E - b \cdot \lambda_P + c \cdot \lambda_P^2$$

Der Koeffizient *a* stellt selbst eine Abbildung $\lambda \to \sigma$ dar mit der Einheit [Nmm⁻²]. An der Stelle λ_P ergibt sich der konstante Materialwert σ_F^{ω} .

$$a = \sigma_F^\omega = 235,02$$

 \Rightarrow

$$\gamma = \frac{\lambda_P^{\omega 2} \cdot \sigma_F^{\omega}}{\pi^2 \cdot E}$$

 \Rightarrow

$$\gamma = \frac{115^2 \cdot 235, 02}{\pi^2 \cdot 210.000} = 1, 5 \equiv \frac{360}{240} = \frac{\sigma_M}{\sigma_F}$$

Das Ergebnis der Modellierung aus 3b:

$$\sigma = 235,02 + 1,15 \cdot \lambda - 0,0159 \cdot \lambda^2$$

 \Rightarrow

$$\sigma = 235,02 \cdot \left(1+0,0049 \cdot \lambda - 0,0000677 \cdot \lambda^2\right) = \sigma_0 \cdot \left(1+k_1 \cdot \lambda - k_2 \cdot \lambda^2\right)$$

Im Vergleich zur allgemein genutzten Tetmajer-Geraden.

$$\sigma = 310 + 1, 14 \cdot \lambda$$

 \Rightarrow

$$\sigma = 310 \cdot (1 + 0,00368 \cdot \lambda) = \sigma_0 \cdot (1 + k_1 \cdot \lambda)$$

Dabei ist $k_2 \cdot \lambda^2$ ein nichtlinearer Anteil aus der Werkstoffeigenschaft "Zähigkeit". Dabei gilt, je größer k_2 desto spröder der Werkstoff.

4.4.6 Zusammenfassung

Die Nutzung der Tetmajer-Parabel ist bei zähen Werkstoffen nicht notwendig, da er nur sehr kleine Beiträge leistet. Mit dem Weglassen des Terms $c \cdot \lambda^2$ oder $k_2 \cdot \lambda^2$ ändern sich jedoch zwangsläufig die anderen Koeffizienten, was dazu führt, dass sich die λ -Intervallgrenzen leicht verschieben. Das führt zu unterschiedlichen Angaben in der Fachliteratur, je nachdem, welches Modell genutzt wurde.

Für den Stahl St 52 ergeben sich analog folgende Werte.

$$\sigma = 450 - 1,915 \cdot \lambda = 450 \cdot (1 + 0,00426 \cdot \lambda)$$

Sowie:

$$\sigma = 360,03 + 1,945 \cdot \lambda - 0,346 \cdot \lambda^2 = 360,03 \cdot (1 + 0,0054 \cdot \lambda - 0,000961 \cdot \lambda^2)$$

Mit:

 \Rightarrow

22

4.4.7 Modell 4 - Finales Modell

Abschließend das finale Modell, erzeugt aus den vorangegangen gewonnenen Erkenntnissen. Dabei wird die Forderung der minimalen Abweichung von der Tetmajer-Geraden abgelöst durch einen bekannten Fixpunkt.

Mit dem Fixpunkt

$$\lambda_F = \begin{cases} 61 & \text{für St 37} \\ 47 & \text{für St 52} \end{cases}$$

der Nebenbedingung

$$\lambda_F \cdot c = b$$

und der Arbeitsgleichung

$$\sigma = a + b \cdot \lambda - c \cdot \lambda^2 = a \cdot \left(1 + k_1 \cdot \lambda - k_2 \cdot \lambda^2\right) \quad \text{mit} \quad k_1 = \frac{b}{a} \quad \text{und} \quad k_2 = \frac{c}{a}$$

ergibt sich

$$a = \sigma_F$$
$$b = \frac{2}{\lambda_P^3} \cdot \left(2\pi \cdot E - \sigma_F \cdot \lambda_P^2\right)$$
$$c = \frac{1}{\lambda_P^4} \cdot \left(3\pi \cdot E - \sigma_F \cdot \lambda_P^2\right)$$

wobei für λ_P folgende Gleichung zu lösen ist:

$$\lambda_P^3 - \frac{\lambda_F}{2} \cdot \lambda_P^2 - \frac{2}{\sigma_F} \cdot \pi^2 \cdot E \cdot \lambda_P + \frac{3}{2} \cdot \frac{\lambda_F}{\sigma_F} \cdot \pi^2 \cdot E = 0$$

$$\Rightarrow \qquad \lambda_P = \begin{cases} 119,656 \rightarrow 120 \text{ für St } 37 \\ 98,548 \rightarrow 99 \text{ für St } 52 \end{cases}$$

$$\Rightarrow \qquad a = 240 \quad \text{für St } 37 \text{ und } a = 360 \quad \text{für St } 52 \\ b = 0,8278 \quad \text{für St } 37 \text{ und } b = 1,356 \quad \text{für St } 52 \\ c = 0,0136 \quad \text{für St } 37 \text{ und } c = 0,0289 \quad \text{für St } 52 \\ k_1 = 0,00345 \quad \text{für St } 37 \text{ und } k_1 = 0,00377 \quad \text{für St } 52 \\ k_2 = 0,0000565 \quad \text{für St } 37 \text{ und } k_2 = 0,0000803 \quad \text{für St } 52 \end{cases}$$

Die Nebenbedingung ist als Kontrolle der Ergebnisse b und c nutzbar. Außerdem, eine nichttriviale Lösung dieser ist:

$$\frac{\lambda_P}{\lambda_F} \approx 2$$

Damit ist eine Abschätzung der relevanten Lösung obig angegebenen kubischen Polynoms möglich.

Für die Herleitungen b und c und Lösungen von λ_P steht ein Maple-Worksheet-Classic[©] auf der Website von [Kni] zur Verfügung.

Die grafischen Darstellungen sind auf der nächsten Seite folgend.

4 Anhang

4.5 Anhang e: Historische Tetmajer- und ω -Werte

[Ist03]

Material	a $[\text{kg} \cdot \text{cm}^{-2}]$	$\mathbf{b} \left[\mathrm{kg} \cdot \mathrm{cm}^{-2} \right]$	Gültigkeitsbereich
Gusseisen	7760	120	$0 \le \lambda \le 80$
St 37	2400	0	$0 \le \lambda \le 60$
St 37	2890	8,175	$60 < \lambda \le 100$
St 48	3120	0	$0 \le \lambda \le 60$
St 48	4690	26,175	$60 < \lambda \le 100$
St 52	3600	0	$0 \le \lambda \le 60$
St 52	5890	38,175	$60 < \lambda \le 100$
Niedriglegierter Stahl	4700	23,05	$0 \leq \lambda \leq 86$
Nadelholz	300	2,00	$0 \le \lambda \le 100$

Tetmajer-Koeffizienten

λ	Gusseisen	St 37	St 48	St 52	Stahlbeton	Nadelholz
0	1,00	1,00	1,00	1,00	1,00	1,00
10	1,01	1,02	1,02	1,02	1,00	1,07
20	1,05	1,04	1,05	1,06	1,00	1,15
30	1,11	1,08	1,09	1,11	1,00	1,25
40	1,22	1,14	1,16	1,19	1,00	1,36
50	1,39	1,21	1,24	1,28	1,00	1,50
60	1,67	1,30	1,35	1,41	-	1,67
70	2,21	1,41	1,50	1,58	1,08	1,87
80	3,50	1,55	1,70	1,79	-	2,14
90	4,43	1,71	1,90	2,05	1,40	2,50
100	4,45	1,90	2,30	2,53	1,60	3,00
110	-	2,11	2,60	3,06	-	3,73
120	-	2,43	3,15	3,65	2,28	4,55
130	-	2,85	3,75	4,28	-	5,48
140	-	3,31	4,30	4,96	3,00	6,51
150	-	3,80	5,10	5,70	-	7,61

 ω -Werte
4.6 Anhang f: Tetmajer-Koeffizienten k_1 und k_2

Werkstoff	λ_{MIN}	$\sigma_0 \left[\mathrm{Nmm}^{-2} \right]$	k_1	k_2
Weicher Stahl	105	310	0,00368	0,00000
Mittelharter Stahl	89	335	0,00185	0,00000
Nickelstahl	86	470	0,00490	0,00000
Grauguss	80	776	0,01546	0,00007
Kiefernholz	100	293	0,00662	0,00000

Tetmajer-Koeffizienten k_1, k_2

 $LAT_E X 2_{\varepsilon}$

2.4 Das Kappa- Verfahren - Nach DIN 18 800 Neu

Knicken nach DIN 18800 Neu.

Das κ -Verfahren.

Dipl.-Ing. Björnstjerne Zindler, M.Sc.

https://www.Zenithpoint.de

Erstellt: 11. Mai 2012 - Letzte Revision: 15. Januar 2023

Inhaltsverzeichnis

1	Das	Kappa-Verfahren nach DIN 18800 Neu	2
2	Bem	essung	3
	2.1	Ermittlung von $N_{pl,d}$ - Normalkraft im vollplastischen Zustand	3
	2.2	Ermittlung von κ - Voraussetzungen	4
		2.2.1 Der bezogene Schlankheitsgrad $\overline{\lambda}_K$	4
		2.2.2 Der Parameter α	5
		2.2.3 Die Hilfskonstante k	6
	2.3	Ermittlung von κ - Berechnung	7
3	Nacł	iweis	8
4	Anh	ang	9
	4.1	Anhang a: Die Knickspannungslinien nach DIN 18800 Neu	9
	4.2	Anhang b: Die Regressionspolynome der Knickspannungslinien DIN 18800 Neu	10

Literatur

[001] DIN18800-Ausgabe November 1990.

[Dipa] Dipl.-Ing. Björnstjerne Zindler, M.Sc. Das Omega-Verfahren nach DIN4114.

[Dipb] Dipl.-Ing. Björnstjerne Zindler, M.Sc. Nachweisverfahren nach DIN18800.

1 Das Kappa-Verfahren nach DIN 18800 Neu

Aufbauend auf [Dipb] soll ein Profil, beschrieben in [Dipa] auf Biegeknicken mittels des Kappa-Verfahrens nach [001] nachgewiesen werden.

Kappa-Verfahren

Das Kappa-Verfahren ist ein Ersatzstabverfahren nach der Methode Elastisch-Plastisch [Dipb].¹

Grundlage des Nachweises ist die Erfüllung der Bedingung von DIN18800, Teil 2, (§304).

$$\frac{N}{\kappa \cdot N_{pl,d}} \le 1$$

¹siehe auch "Nachweisverfahren nach DIN18800"

2 Bemessung

2.1 Ermittlung von $N_{pl,d}$ - Normalkraft im vollplastischen Zustand

Bemessung

Für die Ermittlung von $N_{pl,d}$ steht folgende Berechnungsgrundlage zur Verfügung:

$$N_{pl,d} = \sigma_{R,d} \cdot A = f_{y,d} \cdot A = \frac{f_{y,k}}{\gamma_m} \cdot A$$

Wobei A die Querschnittsfläche des Trägers darstellt, $\sigma_{R,d}$ die Grenznormalspannung², $f_{y,k}$ die Streckgrenze des verwendeten Baustahls³ und γ_m der Sicherheitsbeiwert für Widerstände⁴.

 $A = 2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8 = 656 \text{mm}^2$

 \Rightarrow

$$N_{pl,d} = \frac{240}{1,1} \cdot 656 = 143,13$$
KN

Bemessung

Die Trägheitsmomente sind berechenbar über:

$$I_1 = (I_{z-z} =) 2 \cdot \frac{40^3 \cdot 4}{12} + \frac{8^3 \cdot (50 - 2 \cdot 4)}{12} = 44.459 \text{mm}^4 = I_{\min}$$

Und:

$$I_2 = (I_{y-y} =) 2 \cdot \frac{40 \cdot 4^3 + 40 \cdot 4 \cdot \left(\frac{50}{2} - \frac{4}{2}\right)}{12} + \frac{8 \cdot (50 - 2 \cdot 4)^3}{12} = 50.432 \text{mm}^4 = I_{\text{max}}$$

Der dazugehörige Trägheitsradius beträgt:

$$i_{\min} = \sqrt{\frac{44.459}{2 \cdot 40 \cdot 4 + (50 - 2 \cdot 4) \cdot 8}} = 8,23$$
mm

Für den angenommenen Knickfall 2 nach Euler (gelenkig, gelenkig) ergibt sich eine Knicklänge s_k aus der gewählten Stablänge l = 500mm von:

$$s_k = \frac{l}{1} = \frac{500}{1} = 500$$
mm

Die Schlankheit λ kann berechnet werden:

$$\lambda = (\lambda_K =) \frac{s_k}{i_{\min}} = \frac{500}{8,23} = 60,75$$

- - -

²nach DIN18800, Teil 1, (§746)

³nach DIN18800, Teil 1, Tabelle 1

⁴nach DIN18800, Teil 1, (§720)

2.2 Ermittlung von κ - Voraussetzungen

Zur Ermittlung von κ sind mehrere Schritte notwendig mit der Ermittlung weiterer Beiwerte.

2.2.1 Der bezogene Schlankheitsgrad $\bar{\lambda}_K$

Nach DIN18800, Teil 2, (§110) gilt für $\bar{\lambda}_K$:

$$\bar{\lambda}_K = \frac{\lambda_K}{\lambda_a}$$

Der Wert von λ_K ist bekannt:

$$\lambda_K = 60,75$$

Für den Wert von λ_a , dem Bezugsschlankheitsgrad steht⁵ eine Berechnungsgrundlage zur Verfügung:

$$\lambda_a = \pi \cdot \sqrt{\frac{E}{f_{y,k}}} = \pi \cdot \sqrt{\frac{210.000}{240}} = 92,93$$

Mit E dem Elastizitätsmodul⁶. Damit ist $\bar{\lambda}_K$ ermittelt.

$$\bar{\lambda}_K = \frac{60,75}{92,93} = 0,654 > 0,2$$

Da $\bar{\lambda}_K > 0, 2$ gilt, ist der Parameter α notwendig⁷, sowie die Hilfskonstante k^8 .

⁵nach DIN18800, Teil 2, (§110)

⁶nach DIN18800, Teil 1, Tabelle 1

⁷nach DIN18800, Teil 2, Tabelle 4 ⁸nach DIN18800, Teil 2, (Gl. 4b)

2.2.2 Der Parameter α

Für den Parameter α werden einige Querschnittsdaten benötigt⁹:

$$\frac{h}{b} = \frac{50}{40} = 1,25 > 1,2$$

Und:

$$t = 4 \le 40$$

Mit einer weichen Achse um z - z entspricht das¹⁰ der Knickspannungskennlinie b.

Quersch	Ausweichen rechtwinklig zur Achse	Knickspan- nungslinie	
Hohlprofile	warm gefertigt	y — y z — z	a ^{a)}
	kalt gefertigt	y — y z — z	b ^{ai}
geschweißte Kastenquerschnitte		y — y z — z	b
	dicke Schweißnaht und $h_{ m y}/t_{ m y} < 30$ $h_{ m z}/t_{ m z} < 30$	y — y z — z	C
gewalzte I-Profile	$h/b > 1,2; t \le 40 \text{ mm}$	y — y z — z	a ^{a)} b ^{a)}
e yy	h/b > 1,2; 40 < t ≤ 80 mm h/b ≤ 1,2; t ≤ 80 mm	y — y z — z	b ^{a)}
Ž b	<i>t</i> > 80 mm	y — y z — z	d _{a)}
geschweißte I-Querschnitte	$t_{ m i} \leq$ 40 mm	y — y z — z	b C
	<i>t</i> _i > 40 mm	y — y z — z	c d
U-, L-, T- und Vollquerschnitte			-
$y \stackrel{z}{\underset{z}{\longleftarrow}} y \stackrel{z}{\underset{y}{\longleftarrow}} y \stackrel{z}{\underset{z}{\longleftarrow}} y \stackrel{z}{\underset{z}{\longleftarrow}} y \stackrel{z}{\underset{z}{\longleftarrow}} y \stackrel{z}{\underset{z}{\longleftarrow}} 0$ und mehrteilige Stäbe nach Abschnitt 4.	4	y — y z — z	С

Zuordnung der Querschnitte zu den Knickspannungslinien

Nach DIN18800, Teil 2, Tabelle 4 ist der Parameter α festgelegt.

Knickspannungslinie	a_0	a	b	c	d
α	0,13	0,21	0,34	0,49	0,76
_					

Parameter α zur Berechnung des Abminderungsfaktors κ .

 \Rightarrow

 $\alpha = 0,34$

⁹entnommen [Dipa] ¹⁰nach DIN18800, Teil 2, Tabelle 5

2.2.3 Die Hilfskonstante k

Jetzt ist¹¹ die Hilfskonstante k ermittelbar.¹²

$$k = \frac{1}{2} \cdot \left[1 + \alpha \cdot \left(\bar{\lambda}_K - 0, 2\right) + \bar{\lambda}_K^2\right] = \frac{1}{2} \cdot \left[1 + 0, 34 \cdot (0, 654 - 0, 2) + 0, 654^2\right] = 0,791$$

¹¹aus DIN18800, Teil 2, (Gl. 4b) ¹²Die Hilfskonstante k ist eine nach unten geöffnete Parabel mit dem Scheitelpunkt:

$$P_S\left(\frac{\alpha}{2}, \frac{1}{2} \cdot \left(1 - \frac{\alpha}{5} + \frac{\alpha^2}{4}\right)\right)$$

Zwei markante Punkte sind bekannt.

$$k(\bar{\lambda}_K, \alpha) = \frac{5-\alpha}{10} + \frac{\alpha}{2} \cdot \bar{\lambda}_K + \frac{1}{2} \cdot \bar{\lambda}_K^2$$
$$k(0, \alpha) = \frac{5-\alpha}{10}$$

Sowie:

 \Rightarrow

 \Rightarrow

$$0 = \frac{5-\alpha}{10} + \frac{\alpha}{2} \cdot \bar{\lambda}_K + \frac{1}{2} \cdot \bar{\lambda}_K^2$$

$$= 5 \cdot \frac{\bar{\lambda}_K^2 - 1}{5 \cdot \bar{\lambda}_K - 1} \qquad \bar{\lambda}_K = \frac{\alpha}{2} \pm \frac{1}{10} \cdot \sqrt{25 \cdot \alpha^2 - 20 \cdot \alpha + 100}$$

 $\bar{\lambda}_K = 1$

 $\alpha = 5$

Für $\alpha = 0$:

Für $\bar{\lambda}_K = 0$:

Eine Singularität existiert bei $\bar{\lambda}_K = \frac{1}{5}$.

 α

$$k\left(\frac{1}{5},\alpha\right) = \frac{12}{25}$$

Grafisch dargestellt:

2.3 Ermittlung von κ - Berechnung

Nun steht der Berechnung des Wertes κ nichts mehr im Wege.

$$\kappa = \frac{1}{k + \sqrt{k^2 - \bar{\lambda}_K^2}} = \frac{1}{0,791 + \sqrt{0,791^2 - 0,654^2}} = 0,81$$

Eine grafische Kontrolle ist möglich¹³.¹⁴

 $\label{eq:abs} \begin{array}{l} \mbox{Abminderungsfaktoren κ für Biegeknicken} \\ (Knickspannungslinien a, b, c, d) \\ \mbox{und κ_M für Biegedrillknicken (bdk) mit $n=2,5$.} \end{array}$

¹³über DIN18800, Teil 2, Bild 10

 $^{14}\textsc{Die}$ Berechnungsgrundlagen von κ lassen sich zusammenfassen.

$$\kappa\left(\bar{\lambda}_{K},\alpha\right) = \frac{2}{\bar{\lambda}_{K}^{2} + \alpha \cdot \lambda_{K} + \frac{5-\alpha}{5} + \sqrt{\left(\bar{\lambda}_{K}^{2} + \alpha \cdot \lambda_{K} + \frac{5-\alpha}{5}\right)^{2} - 4 \cdot \bar{\lambda}_{K}^{2}}}$$

Diese Funktion besitzt folgende Eigenschaften.

$$\kappa (0, \alpha) = \frac{10}{10 - 2 \cdot \alpha} \qquad \kappa (+\infty, \alpha) = 0$$

$$\kappa (\bar{\lambda}_K, 0) = \bar{\lambda}_K^{-2} \propto \lambda_K^{-2} \propto \lambda_a^2 \qquad \kappa (\bar{\lambda}_K, +\infty) = 0$$

$$\bar{\lambda}_K = \frac{1}{5}.$$

$$\kappa \left(\frac{1}{5}, \alpha\right) = 1$$

Eine Singularität existiert bei $\bar{\lambda}_K =$

3 Nachweis

Aus [Dipa] ist die einwirkende Kraft gegeben mit N = 120KN.

$$\frac{120}{0,81\cdot 143,13} = 1,04 \approx 1$$

Damit ist der Nachweis erfüllt. Der Knickstab ist voll ausgelastet.

4 Anhang

Anhang

4.1 Anhang a: Die Knickspannungslinien nach DIN 18800 Neu

$ar{\lambda}_k$	χ für Knickspannungslinie								
	а	b	с	d					
0,2	1,000	1,000	1,000	1,000					
0,4	0,953	0,926	0,897	0,850					
0,6	0,890	0,837	0,785	0,710					
0,8	0,796	0,724	0,662	0,580					
1,0	0,666	0,597	0,540	0,467					
1,2	0,530	0,478	0,434	0,376					
1,4	0,418	0,382	0,349	0,306					
1,6	0,333	0,308	0,284	0,251					
1,8	0,270	0,252	0,235	0,209					
2,0	0,223	0,209	0,196	0,177					
2,2	0,187	0,176	0,166	0,151					
2,4	0,159	0,151	0,142	0,130					
2,6	0,136	0,130	0,123	0,113					
2,8	0,118	0,113	0,108	0,100					
3,0	0,104	0,099	0,095	0,088					

Abminderungsfaktoren χ der Europäischen Knickspannungslinien

4.2 Anhang b: Die Regressionspolynome der Knickspannungslinien DIN 18800 Neu

• Knickspannungslinie a

$$\kappa_a \approx 0,9635 + \frac{\overline{\lambda}_K}{2,6685} - \frac{\overline{\lambda}_K^2}{0,9418^2} + \frac{\overline{\lambda}_K^3}{1,2402^3} - \frac{\overline{\lambda}_K^4}{1,9170^4}$$

 \Rightarrow

• Knickspannungslinie b

$$\kappa_b \approx 1,0364 - \frac{\overline{\lambda}_K}{25,0772} - \frac{\overline{\lambda}_K^2}{1,1827^2} + \frac{\overline{\lambda}_K^3}{1,3895^3} - \frac{\overline{\lambda}_K^4}{2,0641^4}$$

 \Rightarrow

• Knickspannungslinie c

• Knickspannungslinie d

$$\kappa_d \approx 1,1789 - \frac{\overline{\lambda}_K}{1,0995} + \frac{\overline{\lambda}_K^2}{2,3558^2} + \frac{\overline{\lambda}_K^3}{3,1041^3} - \frac{\overline{\lambda}_K^4}{3,0883^4}$$

Für $\overline{\lambda}_K \to 3$ treten größere Abweichungen auf!

 $\operatorname{IAT}_E X 2_{\varepsilon}$

2.5 Nachweis über Eurocode 3 / EN 1993

3 Zusammenfassung und Vergleich

Letztendlich zum Vergleich die Nachweise der einzelnen Vorschriften aufgelistet.

	Nachweis	Nachweis
Methode	- symbolisch	- numerisch
Lambda- Verfahren	$\sigma_{vorh} \cdot S \le \sigma_{zul}$	1,14 > 1
Phi- Verfahren	$\sigma_{vorh} \le \sigma_{zul} \cdot \varphi$	1,42 > 1
Omega- Verfahren	$\sigma_{vorh} \cdot \omega \leq \sigma_{zul}$	1 = 1
Kappa- Verfahren	$N \le N_{pl,d} \cdot \kappa$	1 = 1
Eurocode 3	XXX	ууу

4 Anhang

Julässige Spannungen für Bauteile in N/mm ² DIN 18 800 Teil 1									
Spannungsart	a vice day	11.15	We	rkstoff	und Las	tfall	1) 193 - Y	175.02	
	St	37	St	52	StE	460	StE	690	
	H	HZ	Н	HZ	Н	HZ	Н	HZ	
Druck und Biegedruck (zul σ_D) für Stabilitätsnachweis nach DIN 4114 Teil 1 und 2	140	160	210	240	275	310			
Druck und Biegedruck Zug und Biegezug (zul σ) Vergleichsspannung	160	180	240	270	310	350	410	460	
Schub (zul τ)	92	104	139	156	180	200	240	270	

Allgemeine Baustähle, Auszug aus DIN 17100

tahlsorte Kurzname			St 37-2	USt 37-2	RSt 37-2	St 37-3	St 52-3	
Werkstoffnummer	enn and a	E an en tred	1.0037	1.0036	1.0038	1.0016	1.570	
Desoxidationsart ¹)	Ben Jer B	a halam l	²)	U	R	RR	RR	
Zugfestigkeit für Erzeugnisdicken	N/mm ²	$\stackrel{\geqq}{\leq} 3\\ \stackrel{100}{\leq} 100$	340 bis 470		340 bis 470			
in mm	1.2.1	> 100		nac	h Vereinbar	ung		
Obere Streckgrenze	N/mm ²	≦ 16	2	.35	23	35	355	
für Erzeugnisdicken in mm	min	$\begin{array}{c} > 16 \\ \leq 40 \end{array}$	2	25	22	25	345	
	> <= > <= 1	$> 40 \leq 63$	2	215		215		
		$> 63 \leq 80$	2	05	21	215		
		$> 80 \leq 100$	1	195		15	315	
	an again a la	> 100	2121	nach Vereinbarung				
Bruchdehnung für Erzeugnisdicken	% min	$\stackrel{\geq}{\leq} 3 \stackrel{3}{\leq} 40$		Probenlage längs 26 quer 24				
in mm	angun (n) 'diy' ray	$> 40 \leq 63$		Probenlage längs 25 quer 23				
$\begin{array}{l} \text{Meßlänge} \\ L_0 = 5d_0 \end{array}$		$> 63 \leq 100$	2	na se na desta la seguera desta	20 18			
	CONTRACTOR NO.	> 100						

Zulässige Spannungen für Bauteile in N/mm²

DIN 18800 Teil 1 (März 1981)

Spannungsart	Werkstoff					
	St 37		St 52			
	Lastfall H N/mm ²	HZ N/mm²	H N/mm²	HZ N/mm²		
Druck und Biegedruck (zul σ_D) für Stabilitätsnachweis nach DIN 4114 Teil 1 und Teil 2	140	160	210	240		
Zug und Biegezug/Druck und Biegedruck (zul σ)	160	180	240	270		
Schub (zul τ)	92	104	139	156		

Allgemeine Kennwerte

	man and a second se		
Stahl	Streck- grenze β_{s}	Elastizitäts- modul E	Schub- modul G
	N/mm ²	N/mm ²	N/mm ²
Baustahl St 37 Baustahl St 52 Stahlguß GS 52 Vergütungsstahl C 35 N	240 ¹) 360 ²) 260 280	210000	81000
Grauguß GG 15		100000	38000

¹) Für Materialdicken ≤100 mm, ²) Für Materialdicken ≤60 mm. Für größere Dicken sind entsprechende Festlegungen zu treffen.

Stahlart	Stahlsorte	τ_{tzul}	$\sigma_{ m b\ zul}$	R _m	Re	$\sigma_{ m bF}$	$\sigma_{\rm W}$	$\tau_{\rm W}$
Baustähle ¹⁾ DIN EN 10025 (DIN 17100)	S235JRG2 (St 37-2) S275JR (St 44-2) E295 (St 50-2) E335 (St 60-2)	18 22 26 32	37 45 52 63	340 410 470 570	215 255 275 315	260 305 330 380	150 185 210 255	105 130 145 180
Vergütungsstähle ²⁾ DIN EN 10083 (DIN 17200)	C35E (Ck 35) C45E (Ck 45) 25CrMo4 34CrMo4 42CrMo4 50CrMo4 34CrNiMo6	27 32 39 44 50 50 55	53 64 77 88 100 100 110	480 580 700 800 900 900 1000	270 305 450 550 650 700 800	325 365 540 660 780 840 900	215 260 315 360 405 405 450	150 180 220 250 285 285 315
Einsatzstähle ³⁾ DIN EN 10084 (DIN 17210)	16MnCr5 20MnCr5 15CrNi6	36 44 44	72 88 88	650 800 800	450 550 550	540 660 660	290 360 360	205 250 250

Zulässige Spannungen für Überschlagsberechnungen und Festigkeitswerte in N/mm² $R_{\rm m} = Zugfestigkeit, R_{\rm e} = Streckgrenze bzw. 0,2 %-Dehngrenze, \sigma_{\rm bF} = Biegegrenze, \sigma_{\rm W} = Zug-Druck-Wechselfestigkeit, \tau_{\rm W} = Schubwechselfestigkeit$

¹⁾ Dicke 40...63 mm, ²⁾ Dicke 40...100 mm, ³⁾ Dicke 65 mm.

 $\operatorname{I\!AT}_{E\!X} 2_{\operatorname{\mathcal{E}}}$