Roger Penrose

THE ROAD TO REALITY

A Complete Guide to the Laws of the Universe

Contents

Prefa	ice	XV	
Ackn	owledgements	xxiii	
Notation			
Prolo	ogue	1	
1 T	he roots of science	7	
1. 1.: 1.: 1.:	Mathematical truth Is Plato's mathematical world 'real'? Three worlds and three deep mysteries	7 9 12 17 22	
2 A	n ancient theorem and a modern question	25	
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	 Euclid's postulates Similar-areas proof of the Pythagorean theorem Hyperbolic geometry: conformal picture Other representations of hyperbolic geometry Historical aspects of hyperbolic geometry 	25 28 31 33 37 42 46	
3 K	inds of number in the physical world	51	
3 3 3 3	The real-number system Real numbers in the physical world Do natural numbers need the physical world?	51 54 59 63 65	
4 M	Magical complex numbers		
4. 4.	\mathcal{E}	71 74	

	4.3 4.4 4.5	Caspar Wessel's complex plane	76 81 83
	T. J	Trow to construct the Mandelorot set	03
5	Geo	ometry of logarithms, powers, and roots	86
	5.1	Geometry of complex algebra	86
	5.2	The idea of the complex logarithm	90
	5.3	, ,	92
	5.4	1 1	96
	5.5	Some relations to modern particle physics	100
6	Rea	ıl-number calculus	103
	6.1	What makes an honest function?	103
	6.2	1	105
	6.3	E ,	107
	6.4		112
	6.5		114
	6.6	Integration	116
7	Cor	nplex-number calculus	122
	7.1	Complex smoothness; holomorphic functions	122
	7.2	Contour integration	123
	7.3	<u>*</u>	127
	7.4	Analytic continuation	129
8	Rie	mann surfaces and complex mappings	135
	8.1	The idea of a Riemann surface	135
	8.2	Conformal mappings	138
	8.3	The Riemann sphere	142
	8.4	The genus of a compact Riemann surface	145
	8.5	The Riemann mapping theorem	148
9	Fourier decomposition and hyperfunctions		
	9.1	Fourier series	153
	9.2	Functions on a circle	157
	9.3		161
	9.4		164
	9.5	Frequency splitting from the Fourier transform	166
	9.6	What kind of function is appropriate?	168
	9.7	Hyperfunctions	172

10	Surfa	ces	179
	10.1	Complex dimensions and real dimensions	179
	10.2	Smoothness, partial derivatives	181
	10.3	Vector fields and 1-forms	185
	10.4	Components, scalar products	190
	10.5	The Cauchy–Riemann equations	193
11	Hype	rcomplex numbers	198
	11.1	The algebra of quaternions	198
	11.2	The physical role of quaternions?	200
	11.3	Geometry of quaternions	203
	11.4	How to compose rotations	206
	11.5	Clifford algebras	208
	11.6	Grassmann algebras	211
12	Mani	folds of <i>n</i> dimensions	217
	12.1	Why study higher-dimensional manifolds?	217
	12.2	Manifolds and coordinate patches	221
	12.3	Scalars, vectors, and covectors	223
	12.4	Grassmann products	227
	12.5	Integrals of forms	229
	12.6	Exterior derivative	231
	12.7	Volume element; summation convention	237
	12.8	Tensors; abstract-index and diagrammatic notation	239
	12.9	Complex manifolds	243
13	Symn	netry groups	247
	13.1	Groups of transformations	247
	13.2	Subgroups and simple groups	250
	13.3	Linear transformations and matrices	254
	13.4	Determinants and traces	260
	13.5	Eigenvalues and eigenvectors	263
	13.6	Representation theory and Lie algebras	266
	13.7	Tensor representation spaces; reducibility	270
	13.8	Orthogonal groups	275
	13.9	Unitary groups	281
	13.10	Symplectic groups	286
14	Calcu	lus on manifolds	292
	14.1	Differentiation on a manifold?	292
	14.2	Parallel transport	294
	14.3	Covariant derivative	298
	14.4	Curvature and torsion	301

	14.5	Geodesics, parallelograms, and curvature	303
	14.6	Lie derivative	309
	14.7	What a metric can do for you Symplectic manifolds	317 321
	17.0	Symplectic mannolds	321
15	Fibr	e bundles and gauge connections	325
	15.1	Some physical motivations for fibre bundles	325
	15.2	The mathematical idea of a bundle	328
	15.3	Cross-sections of bundles	331
	15.4		334
		Complex vector bundles, (co)tangent bundles	338
	15.6	Projective spaces	341
	15.7	Non-triviality in a bundle connection	345
	15.8	Bundle curvature	349
16	The	ladder of infinity	357
	16.1	Finite fields	357
	16.2	A finite or infinite geometry for physics?	359
		Different sizes of infinity	364
	16.4	Cantor's diagonal slash	367
	16.5	Puzzles in the foundations of mathematics	371
	16.6	Turing machines and Gödel's theorem	374
	16.7	Sizes of infinity in physics	378
17	Spac	cetime	383
	17.1	The spacetime of Aristotelian physics	383
	17.2	Spacetime for Galilean relativity	385
	17.3	Newtonian dynamics in spacetime terms	388
	17.4	The principle of equivalence	390
	17.5	Cartan's 'Newtonian spacetime'	394
	17.6	The fixed finite speed of light	399
	17.7	Light cones	401
	17.8	The abandonment of absolute time	404
	17.9	The spacetime for Einstein's general relativity	408
18	Min	412	
	18.1	Euclidean and Minkowskian 4-space	412
	18.2	The symmetry groups of Minkowski space	415
	18.3	Lorentzian orthogonality; the 'clock paradox'	417
	18.4	Hyperbolic geometry in Minkowski space	422
	18.5	The celestial sphere as a Riemann sphere	428
	18.6	Newtonian energy and (angular) momentum	431
	18.7	Relativistic energy and (angular) momentum	434

19	The c	lassical fields of Maxwell and Einstein	440
	19.1	Evolution away from Newtonian dynamics	440
	19.2	Maxwell's electromagnetic theory	442
	19.3	Conservation and flux laws in Maxwell theory	446
	19.4	The Maxwell field as gauge curvature	449
	19.5	The energy–momentum tensor	455
	19.6	Einstein's field equation	458
	19.7	Further issues: cosmological constant; Weyl tensor	462
	19.8	Gravitational field energy	464
20	Lagra	angians and Hamiltonians	471
	20.1	The magical Lagrangian formalism	471
	20.2	The more symmetrical Hamiltonian picture	475
	20.3	Small oscillations	478
	20.4	Hamiltonian dynamics as symplectic geometry	483
	20.5	Lagrangian treatment of fields	486
	20.6	How Lagrangians drive modern theory	489
21	The q	uantum particle	493
	21.1	Non-commuting variables	493
	21.2	Quantum Hamiltonians	496
	21.3	Schrödinger's equation	498
	21.4	Quantum theory's experimental background	500
	21.5	Understanding wave–particle duality	505
	21.6	What is quantum 'reality'?	507
	21.7	The 'holistic' nature of a wavefunction	511
	21.8	The mysterious 'quantum jumps'	516
	21.9	Probability distribution in a wavefunction	517
	21.10	Position states	520
	21.11	Momentum-space description	521
22	Quantum algebra, geometry, and spin		
	22.1	The quantum procedures U and R	527
	22.2	The linearity of U and its problems for R	530
	22.3	Unitary structure, Hilbert space, Dirac notation	533
	22.4	Unitary evolution: Schrödinger and Heisenberg	535
	22.5	Quantum 'observables'	538
	22.6	YES/NO measurements; projectors	542
	22.7	Null measurements; helicity	544
	22.8	Spin and spinors	549
	22.9	The Riemann sphere of two-state systems	553
	22.10	Higher spin: Majorana picture	559
	22.11	Spherical harmonics	562

	22.12		566
	22.13	The general isolated quantum object	570
23	The entangled quantum world		578
	23.1	Quantum mechanics of many-particle systems	578
	23.2	Hugeness of many-particle state space	580
	23.3	Quantum entanglement; Bell inequalities	582
	23.4	Bohm-type EPR experiments	585
	23.5	Hardy's EPR example: almost probability-free	589
	23.6	Two mysteries of quantum entanglement	591
	23.7	Bosons and fermions	594
	23.8	The quantum states of bosons and fermions	596
	23.9	Quantum teleportation	598
	23.10	Quanglement	603
24	Dirac	s's electron and antiparticles	609
	24.1	Tension between quantum theory and relativity	609
	24.2	Why do antiparticles imply quantum fields?	610
	24.3	Energy positivity in quantum mechanics	612
	24.4	Difficulties with the relativistic energy formula	614
	24.5	The non-invariance of $\partial/\partial t$	616
	24.6	Clifford–Dirac square root of wave operator	618
	24.7	The Dirac equation	620
	24.8	Dirac's route to the positron	622
25	The s	tandard model of particle physics	627
	25.1	The origins of modern particle physics	627
	25.2	The zigzag picture of the electron	628
	25.3	Electroweak interactions; reflection asymmetry	632
	25.4	Charge conjugation, parity, and time reversal	638
	25.5	The electroweak symmetry group	640
	25.6	Strongly interacting particles	645
	25.7	'Coloured quarks'	648
	25.8	Beyond the standard model?	651
26	Quan	tum field theory	655
	26.1	Fundamental status of QFT in modern theory	655
	26.2	Creation and annihilation operators	657
	26.3	Infinite-dimensional algebras	660
	26.4	Antiparticles in QFT	662
	26.5	Alternative vacua	664
	26.6	Interactions: Lagrangians and path integrals	665
	26.7	Divergent path integrals: Feynman's response	670
	26.8	Constructing Feynman graphs; the S-matrix	672
	26.9	Renormalization	675

			Contents
	26.10		600
	26.10	Feynman graphs from Lagrangians	680
	26.11	Feynman graphs and the choice of vacuum	681
27	The E	Big Bang and its thermodynamic legacy	686
	27.1	Time symmetry in dynamical evolution	686
	27.2	Submicroscopic ingredients	688
	27.3	Entropy	690
	27.4	The robustness of the entropy concept	692
	27.5	Derivation of the second law—or not?	696
	27.6	Is the whole universe an 'isolated system'?	699
	27.7	The role of the Big Bang	702
	27.8	Black holes	707
	27.9	Event horizons and spacetime singularities	712
	27.10	Black-hole entropy	714
	27.11	Cosmology	717
	27.12	Conformal diagrams	723
	27.13	Our extraordinarily special Big Bang	726
28	Speculative theories of the early universe		
	28.1	Early-universe spontaneous symmetry breaking	735
	28.2	Cosmic topological defects	739
	28.3	Problems for early-universe symmetry breaking	742
	28.4	Inflationary cosmology	746
	28.5	Are the motivations for inflation valid?	753
	28.6	The anthropic principle	757
	28.7	The Big Bang's special nature: an anthropic key?	762
	28.8	The Weyl curvature hypothesis	765
	28.9	The Hartle–Hawking 'no-boundary' proposal	769
	28.10	Cosmological parameters: observational status?	772
29	The n	neasurement paradox	782
	29.1	The conventional ontologies of quantum theory	782
	29.2	Unconventional ontologies for quantum theory	785
	29.3	The density matrix	791
	29.4	Density matrices for spin $\frac{1}{2}$: the Bloch sphere	793
	29.5	The density matrix in EPR situations	797
	29.6	FAPP philosophy of environmental decoherence	802
	29.7	Schrödinger's cat with 'Copenhagen' ontology	804
	29.8	Can other conventional ontologies resolve the 'cat'?	806
	29.9	Which unconventional ontologies may help?	810
30	Gravi	ity's role in quantum state reduction	816

Is today's quantum theory here to stay? Clues from cosmological time asymmetry

30.1

30.2

816

817

	30.3	Time-asymmetry in quantum state reduction	819
	30.4	Hawking's black-hole temperature	823
	30.5	Black-hole temperature from complex periodicity	827
	30.6	Killing vectors, energy flow—and time travel!	833
	30.7	Energy outflow from negative-energy orbits	836
	30.8	Hawking explosions	838
	30.9	A more radical perspective	842
	30.10	Schrödinger's lump	846
	30.11	Fundamental conflict with Einstein's principles	849
	30.12	Preferred Schrödinger–Newton states?	853
	30.13	FELIX and related proposals	856
	30.14	Origin of fluctuations in the early universe	861
31	Super	symmetry, supra-dimensionality, and strings	869
	31.1	Unexplained parameters	869
	31.2	Supersymmetry	873
	31.3	The algebra and geometry of supersymmetry	877
	31.4	Higher-dimensional spacetime	880
	31.5	The original hadronic string theory	884
	31.6	Towards a string theory of the world	887
	31.7	String motivation for extra spacetime dimensions	890
	31.8	String theory as quantum gravity?	892
	31.9	String dynamics	895
	31.10	Why don't we see the extra space dimensions?	897
	31.11	Should we accept the quantum-stability argument?	902
	31.12	Classical instability of extra dimensions	905
	31.13	Is string QFT finite?	907
	31.14	The magical Calabi-Yau spaces; M-theory	910
	31.15	Strings and black-hole entropy	916
	31.16	The 'holographic principle'	920
	31.17	The D-brane perspective	923
	31.18	The physical status of string theory?	926
32	Einstein's narrower path; loop variables		934
	32.1	Canonical quantum gravity	934
	32.2	The chiral input to Ashtekar's variables	935
	32.3	The form of Ashtekar's variables	938
	32.4	Loop variables	941
	32.5	The mathematics of knots and links	943
	32.6	Spin networks	946
	32.7	Status of loop quantum gravity?	952
33	More	radical perspectives; twistor theory	958
	33.1	Theories where geometry has discrete elements	958
	33.2	Twistors as light rays	962

	33.3	Conformal group; compactified Minkowski space	968
	33.4	Twistors as higher-dimensional spinors	972
	33.5	Basic twistor geometry and coordinates	974
	33.6	Geometry of twistors as spinning massless particles	978
	33.7	Twistor quantum theory	982
	33.8	Twistor description of massless fields	985
	33.9	Twistor sheaf cohomology	987
	33.10	Twistors and positive/negative frequency splitting	993
	33.11	The non-linear graviton	995
	33.12	Twistors and general relativity	1000
	33.13	Towards a twistor theory of particle physics	1001
	33.14	The future of twistor theory?	1003
34	Wher	e lies the road to reality?	1010
	34.1	Great theories of 20th century physics—and beyond?	1010
	34.2	Mathematically driven fundamental physics	1014
	34.3	The role of fashion in physical theory	1017
	34.4	Can a wrong theory be experimentally refuted?	1020
	34.5	Whence may we expect our next physical revolution?	1024
	34.6	What is reality?	1027
	34.7	The roles of mentality in physical theory	1030
	34.8	Our long mathematical road to reality	1033
	34.9	Beauty and miracles	1038
	34.10	Deep questions answered, deeper questions posed	1043
Epi	logue		1048
Bibliography			1050
Inde			1081