Roger Penrose

THE ROAD TO REALITY

A Complete Guide to the Laws of the Universe

JONATHAN CAPE
LONDON
## Contents

**Preface**  
xxv

**Acknowledgements**  
xxiii

**Notation**  
xxvi

**Prologue**  
1

1 The roots of science  
7  
1.1 The quest for the forces that shape the world  
7  
1.2 Mathematical truth  
9  
1.3 Is Plato’s mathematical world ‘real’?  
12  
1.4 Three worlds and three deep mysteries  
17  
1.5 The Good, the True, and the Beautiful  
22

2 An ancient theorem and a modern question  
25  
2.1 The Pythagorean theorem  
25  
2.2 Euclid’s postulates  
28  
2.3 Similar-areas proof of the Pythagorean theorem  
31  
2.4 Hyperbolic geometry: conformal picture  
33  
2.5 Other representations of hyperbolic geometry  
37  
2.6 Historical aspects of hyperbolic geometry  
42  
2.7 Relation to physical space  
46

3 Kinds of number in the physical world  
51  
3.1 A Pythagorean catastrophe?  
51  
3.2 The real-number system  
54  
3.3 Real numbers in the physical world  
59  
3.4 Do natural numbers need the physical world?  
63  
3.5 Discrete numbers in the physical world  
65

4 Magical complex numbers  
71  
4.1 The magic number ‘i’  
71  
4.2 Solving equations with complex numbers  
74
### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Convergence of power series</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Caspar Wessel’s complex plane</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>How to construct the Mandelbrot set</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>Geometry of logarithms, powers, and roots</td>
<td>86</td>
</tr>
<tr>
<td>5.1</td>
<td>Geometry of complex algebra</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>The idea of the complex logarithm</td>
<td>90</td>
</tr>
<tr>
<td>5.3</td>
<td>Multiple valuedness, natural logarithms</td>
<td>92</td>
</tr>
<tr>
<td>5.4</td>
<td>Complex powers</td>
<td>96</td>
</tr>
<tr>
<td>5.5</td>
<td>Some relations to modern particle physics</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Real-number calculus</td>
<td>103</td>
</tr>
<tr>
<td>6.1</td>
<td>What makes an honest function?</td>
<td>103</td>
</tr>
<tr>
<td>6.2</td>
<td>Slopes of functions</td>
<td>105</td>
</tr>
<tr>
<td>6.3</td>
<td>Higher derivatives; $C^\infty$-smooth functions</td>
<td>107</td>
</tr>
<tr>
<td>6.4</td>
<td>The ‘Eulerian’ notion of a function?</td>
<td>112</td>
</tr>
<tr>
<td>6.5</td>
<td>The rules of differentiation</td>
<td>114</td>
</tr>
<tr>
<td>6.6</td>
<td>Integration</td>
<td>116</td>
</tr>
<tr>
<td>7</td>
<td>Complex-number calculus</td>
<td>122</td>
</tr>
<tr>
<td>7.1</td>
<td>Complex smoothness; holomorphic functions</td>
<td>122</td>
</tr>
<tr>
<td>7.2</td>
<td>Contour integration</td>
<td>123</td>
</tr>
<tr>
<td>7.3</td>
<td>Power series from complex smoothness</td>
<td>127</td>
</tr>
<tr>
<td>7.4</td>
<td>Analytic continuation</td>
<td>129</td>
</tr>
<tr>
<td>8</td>
<td>Riemann surfaces and complex mappings</td>
<td>135</td>
</tr>
<tr>
<td>8.1</td>
<td>The idea of a Riemann surface</td>
<td>135</td>
</tr>
<tr>
<td>8.2</td>
<td>Conformal mappings</td>
<td>138</td>
</tr>
<tr>
<td>8.3</td>
<td>The Riemann sphere</td>
<td>142</td>
</tr>
<tr>
<td>8.4</td>
<td>The genus of a compact Riemann surface</td>
<td>145</td>
</tr>
<tr>
<td>8.5</td>
<td>The Riemann mapping theorem</td>
<td>148</td>
</tr>
<tr>
<td>9</td>
<td>Fourier decomposition and hyperfunctions</td>
<td>153</td>
</tr>
<tr>
<td>9.1</td>
<td>Fourier series</td>
<td>153</td>
</tr>
<tr>
<td>9.2</td>
<td>Functions on a circle</td>
<td>157</td>
</tr>
<tr>
<td>9.3</td>
<td>Frequency splitting on the Riemann sphere</td>
<td>161</td>
</tr>
<tr>
<td>9.4</td>
<td>The Fourier transform</td>
<td>164</td>
</tr>
<tr>
<td>9.5</td>
<td>Frequency splitting from the Fourier transform</td>
<td>166</td>
</tr>
<tr>
<td>9.6</td>
<td>What kind of function is appropriate?</td>
<td>168</td>
</tr>
<tr>
<td>9.7</td>
<td>Hyperfunctions</td>
<td>172</td>
</tr>
</tbody>
</table>
10 Surfaces

10.1 Complex dimensions and real dimensions 179
10.2 Smoothness, partial derivatives 181
10.3 Vector fields and 1-forms 185
10.4 Components, scalar products 190
10.5 The Cauchy–Riemann equations 193

11 Hypercomplex numbers

11.1 The algebra of quaternions 198
11.2 The physical role of quaternions? 200
11.3 Geometry of quaternions 203
11.4 How to compose rotations 206
11.5 Clifford algebras 208
11.6 Grassmann algebras 211

12 Manifolds of n dimensions

12.1 Why study higher-dimensional manifolds? 217
12.2 Manifolds and coordinate patches 221
12.3 Scalars, vectors, and covectors 223
12.4 Grassmann products 227
12.5 Integrals of forms 229
12.6 Exterior derivative 231
12.7 Volume element; summation convention 237
12.8 Tensors; abstract-index and diagrammatic notation 239
12.9 Complex manifolds 243

13 Symmetry groups

13.1 Groups of transformations 247
13.2 Subgroups and simple groups 250
13.3 Linear transformations and matrices 254
13.4 Determinants and traces 260
13.5 Eigenvalues and eigenvectors 263
13.6 Representation theory and Lie algebras 266
13.7 Tensor representation spaces; reducibility 270
13.8 Orthogonal groups 275
13.9 Unitary groups 281
13.10 Symplectic groups 286

14 Calculus on manifolds

14.1 Differentiation on a manifold? 292
14.2 Parallel transport 294
14.3 Covariant derivative 298
14.4 Curvature and torsion 301
14.5 Geodesics, parallelograms, and curvature 303
14.6 Lie derivative 309
14.7 What a metric can do for you 317
14.8 Symplectic manifolds 321

15 Fibre bundles and gauge connections 325
15.1 Some physical motivations for fibre bundles 325
15.2 The mathematical idea of a bundle 328
15.3 Cross-sections of bundles 331
15.4 The Clifford bundle 334
15.5 Complex vector bundles, (co)tangent bundles 338
15.6 Projective spaces 341
15.7 Non-triviality in a bundle connection 345
15.8 Bundle curvature 349

16 The ladder of infinity 357
16.1 Finite fields 357
16.2 A finite or infinite geometry for physics? 359
16.3 Different sizes of infinity 364
16.4 Cantor’s diagonal slash 367
16.5 Puzzles in the foundations of mathematics 371
16.6 Turing machines and Gödel’s theorem 374
16.7 Sizes of infinity in physics 378

17 Spacetime 383
17.1 The spacetime of Aristotelian physics 383
17.2 Spacetime for Galilean relativity 385
17.3 Newtonian dynamics in spacetime terms 388
17.4 The principle of equivalence 390
17.5 Cartan’s ‘Newtonian spacetime’ 394
17.6 The fixed finite speed of light 399
17.7 Light cones 401
17.8 The abandonment of absolute time 404
17.9 The spacetime for Einstein’s general relativity 408

18 Minkowskian geometry 412
18.1 Euclidean and Minkowskian 4-space 412
18.2 The symmetry groups of Minkowski space 415
18.3 Lorentzian orthogonality; the ‘clock paradox’ 417
18.4 Hyperbolic geometry in Minkowski space 422
18.5 The celestial sphere as a Riemann sphere 428
18.6 Newtonian energy and (angular) momentum 431
18.7 Relativistic energy and (angular) momentum 434
19 The classical fields of Maxwell and Einstein

19.1 Evolution away from Newtonian dynamics 440
19.2 Maxwell’s electromagnetic theory 442
19.3 Conservation and flux laws in Maxwell theory 446
19.4 The Maxwell field as gauge curvature 449
19.5 The energy–momentum tensor 455
19.6 Einstein’s field equation 458
19.7 Further issues: cosmological constant; Weyl tensor 462
19.8 Gravitational field energy 464

20 Lagrangians and Hamiltonians 471

20.1 The magical Lagrangian formalism 471
20.2 The more symmetrical Hamiltonian picture 475
20.3 Small oscillations 478
20.4 Hamiltonian dynamics as symplectic geometry 483
20.5 Lagrangian treatment of fields 486
20.6 How Lagrangians drive modern theory 489

21 The quantum particle 493

21.1 Non-commuting variables 493
21.2 Quantum Hamiltonians 496
21.3 Schrödinger’s equation 498
21.4 Quantum theory’s experimental background 500
21.5 Understanding wave–particle duality 505
21.6 What is quantum ‘reality’? 507
21.7 The ‘holistic’ nature of a wavefunction 511
21.8 The mysterious ‘quantum jumps’ 516
21.9 Probability distribution in a wavefunction 517
21.10 Position states 520
21.11 Momentum-space description 521

22 Quantum algebra, geometry, and spin 527

22.1 The quantum procedures $U$ and $R$ 527
22.2 The linearity of $U$ and its problems for $R$ 530
22.3 Unitary structure, Hilbert space, Dirac notation 533
22.4 Unitary evolution: Schrödinger and Heisenberg 535
22.5 Quantum ‘observables’ 538
22.6 YES/NO measurements; projectors 542
22.7 Null measurements; helicity 544
22.8 Spin and spinors 549
22.9 The Riemann sphere of two-state systems 553
22.10 Higher spin: Majorana picture 559
22.11 Spherical harmonics 562
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.12</td>
<td>Relativistic quantum angular momentum</td>
<td>566</td>
</tr>
<tr>
<td>22.13</td>
<td>The general isolated quantum object</td>
<td>570</td>
</tr>
<tr>
<td>23</td>
<td>The entangled quantum world</td>
<td>578</td>
</tr>
<tr>
<td>23.1</td>
<td>Quantum mechanics of many-particle systems</td>
<td>578</td>
</tr>
<tr>
<td>23.2</td>
<td>Hugeness of many-particle state space</td>
<td>580</td>
</tr>
<tr>
<td>23.3</td>
<td>Quantum entanglement; Bell inequalities</td>
<td>582</td>
</tr>
<tr>
<td>23.4</td>
<td>Bohm-type EPR experiments</td>
<td>585</td>
</tr>
<tr>
<td>23.5</td>
<td>Hardy’s EPR example; almost probability-free</td>
<td>589</td>
</tr>
<tr>
<td>23.6</td>
<td>Two mysteries of quantum entanglement</td>
<td>591</td>
</tr>
<tr>
<td>23.7</td>
<td>Bosons and fermions</td>
<td>594</td>
</tr>
<tr>
<td>23.8</td>
<td>The quantum states of bosons and fermions</td>
<td>596</td>
</tr>
<tr>
<td>23.9</td>
<td>Quantum teleportation</td>
<td>598</td>
</tr>
<tr>
<td>23.10</td>
<td>Quanglement</td>
<td>603</td>
</tr>
<tr>
<td>24</td>
<td>Dirac’s electron and antiparticles</td>
<td>609</td>
</tr>
<tr>
<td>24.1</td>
<td>Tension between quantum theory and relativity</td>
<td>609</td>
</tr>
<tr>
<td>24.2</td>
<td>Why do antiparticles imply quantum fields?</td>
<td>610</td>
</tr>
<tr>
<td>24.3</td>
<td>Energy positivity in quantum mechanics</td>
<td>612</td>
</tr>
<tr>
<td>24.4</td>
<td>Difficulties with the relativistic energy formula</td>
<td>614</td>
</tr>
<tr>
<td>24.5</td>
<td>The non-invariance of $\partial/\partial t$</td>
<td>616</td>
</tr>
<tr>
<td>24.6</td>
<td>Clifford–Dirac square root of wave operator</td>
<td>618</td>
</tr>
<tr>
<td>24.7</td>
<td>The Dirac equation</td>
<td>620</td>
</tr>
<tr>
<td>24.8</td>
<td>Dirac’s route to the positron</td>
<td>622</td>
</tr>
<tr>
<td>25</td>
<td>The standard model of particle physics</td>
<td>627</td>
</tr>
<tr>
<td>25.1</td>
<td>The origins of modern particle physics</td>
<td>627</td>
</tr>
<tr>
<td>25.2</td>
<td>The zigzag picture of the electron</td>
<td>628</td>
</tr>
<tr>
<td>25.3</td>
<td>Electroweak interactions; reflection asymmetry</td>
<td>632</td>
</tr>
<tr>
<td>25.4</td>
<td>Charge conjugation, parity, and time reversal</td>
<td>638</td>
</tr>
<tr>
<td>25.5</td>
<td>The electroweak symmetry group</td>
<td>640</td>
</tr>
<tr>
<td>25.6</td>
<td>Strongly interacting particles</td>
<td>645</td>
</tr>
<tr>
<td>25.7</td>
<td>‘Coloured quarks’</td>
<td>648</td>
</tr>
<tr>
<td>25.8</td>
<td>Beyond the standard model?</td>
<td>651</td>
</tr>
<tr>
<td>26</td>
<td>Quantum field theory</td>
<td>655</td>
</tr>
<tr>
<td>26.1</td>
<td>Fundamental status of QFT in modern theory</td>
<td>655</td>
</tr>
<tr>
<td>26.2</td>
<td>Creation and annihilation operators</td>
<td>657</td>
</tr>
<tr>
<td>26.3</td>
<td>Infinite-dimensional algebras</td>
<td>660</td>
</tr>
<tr>
<td>26.4</td>
<td>Antiparticles in QFT</td>
<td>662</td>
</tr>
<tr>
<td>26.5</td>
<td>Alternative vacua</td>
<td>664</td>
</tr>
<tr>
<td>26.6</td>
<td>Interactions: Lagrangians and path integrals</td>
<td>665</td>
</tr>
<tr>
<td>26.7</td>
<td>Divergent path integrals: Feynman’s response</td>
<td>670</td>
</tr>
<tr>
<td>26.8</td>
<td>Constructing Feynman graphs; the S-matrix</td>
<td>672</td>
</tr>
<tr>
<td>26.9</td>
<td>Renormalization</td>
<td>675</td>
</tr>
</tbody>
</table>
26.10 Feynman graphs from Lagrangians 680
26.11 Feynman graphs and the choice of vacuum 681

27 The Big Bang and its thermodynamic legacy 686
27.1 Time symmetry in dynamical evolution 686
27.2 Submicroscopic ingredients 688
27.3 Entropy 690
27.4 The robustness of the entropy concept 692
27.5 Derivation of the second law—or not? 696
27.6 Is the whole universe an ‘isolated system’? 699
27.7 The role of the Big Bang 702
27.8 Black holes 707
27.9 Event horizons and spacetime singularities 712
27.10 Black-hole entropy 714
27.11 Cosmology 717
27.12 Conformal diagrams 723
27.13 Our extraordinarily special Big Bang 726

28 Speculative theories of the early universe 735
28.1 Early-universe spontaneous symmetry breaking 735
28.2 Cosmic topological defects 739
28.3 Problems for early-universe symmetry breaking 742
28.4 Inflationary cosmology 746
28.5 Are the motivations for inflation valid? 753
28.6 The anthropic principle 757
28.7 The Big Bang’s special nature: an anthropic key? 762
28.8 The Weyl curvature hypothesis 765
28.9 The Hartle–Hawking ‘no-boundary’ proposal 769
28.10 Cosmological parameters: observational status? 772

29 The measurement paradox 782
29.1 The conventional ontologies of quantum theory 782
29.2 Unconventional ontologies for quantum theory 785
29.3 The density matrix 791
29.4 Density matrices for spin $\frac{1}{2}$: the Bloch sphere 793
29.5 The density matrix in EPR situations 797
29.6 FAPP philosophy of environmental decoherence 802
29.7 Schrödinger’s cat with ‘Copenhagen’ ontology 804
29.8 Can other conventional ontologies resolve the ‘cat’? 806
29.9 Which unconventional ontologies may help? 810

30 Gravity’s role in quantum state reduction 816
30.1 Is today’s quantum theory here to stay? 816
30.2 Clues from cosmological time asymmetry 817
Contents

30.3 Time-asymmetry in quantum state reduction 819
30.4 Hawking’s black-hole temperature 823
30.5 Black-hole temperature from complex periodicity 827
30.6 Killing vectors, energy flow—and time travel! 833
30.7 Energy outflow from negative-energy orbits 836
30.8 Hawking explosions 838
30.9 A more radical perspective 842
30.10 Schrödinger’s lump 846
30.11 Fundamental conflict with Einstein’s principles 849
30.12 Preferred Schrödinger–Newton states? 853
30.13 FELIX and related proposals 856
30.14 Origin of fluctuations in the early universe 861

31 Supersymmetry, supra-dimensionality, and strings 869
31.1 Unexplained parameters 869
31.2 Supersymmetry 873
31.3 The algebra and geometry of supersymmetry 877
31.4 Higher-dimensional spacetime 880
31.5 The original hadronic string theory 884
31.6 Towards a string theory of the world 887
31.7 String motivation for extra spacetime dimensions 890
31.8 String theory as quantum gravity? 892
31.9 String dynamics 895
31.10 Why don’t we see the extra space dimensions? 897
31.11 Should we accept the quantum-stability argument? 902
31.12 Classical instability of extra dimensions 905
31.13 Is string QFT finite? 907
31.14 The magical Calabi–Yau spaces; M-theory 910
31.15 Strings and black-hole entropy 916
31.16 The ‘holographic principle’ 920
31.17 The D-brane perspective 923
31.18 The physical status of string theory? 926

32 Einstein’s narrower path; loop variables 934
32.1 Canonical quantum gravity 934
32.2 The chiral input to Ashtekar’s variables 935
32.3 The form of Ashtekar’s variables 938
32.4 Loop variables 941
32.5 The mathematics of knots and links 943
32.6 Spin networks 946
32.7 Status of loop quantum gravity? 952

33 More radical perspectives; twistor theory 958
33.1 Theories where geometry has discrete elements 958
33.2 Twistors as light rays 962
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3 Conformal group; compactified Minkowski space</td>
<td>968</td>
</tr>
<tr>
<td>33.4 Twistors as higher-dimensional spinors</td>
<td>972</td>
</tr>
<tr>
<td>33.5 Basic twistor geometry and coordinates</td>
<td>974</td>
</tr>
<tr>
<td>33.6 Geometry of twistors as spinning massless particles</td>
<td>978</td>
</tr>
<tr>
<td>33.7 Twistor quantum theory</td>
<td>982</td>
</tr>
<tr>
<td>33.8 Twistor description of massless fields</td>
<td>985</td>
</tr>
<tr>
<td>33.9 Twistor sheaf cohomology</td>
<td>987</td>
</tr>
<tr>
<td>33.10 Twistors and positive/negative frequency splitting</td>
<td>993</td>
</tr>
<tr>
<td>33.11 The non-linear graviton</td>
<td>995</td>
</tr>
<tr>
<td>33.12 Twistors and general relativity</td>
<td>1000</td>
</tr>
<tr>
<td>33.13 Towards a twistor theory of particle physics</td>
<td>1001</td>
</tr>
<tr>
<td>33.14 The future of twistor theory?</td>
<td>1003</td>
</tr>
<tr>
<td>34 Where lies the road to reality?</td>
<td>1010</td>
</tr>
<tr>
<td>34.1 Great theories of 20th century physics—and beyond?</td>
<td>1010</td>
</tr>
<tr>
<td>34.2 Mathematically driven fundamental physics</td>
<td>1014</td>
</tr>
<tr>
<td>34.3 The role of fashion in physical theory</td>
<td>1017</td>
</tr>
<tr>
<td>34.4 Can a wrong theory be experimentally refuted?</td>
<td>1020</td>
</tr>
<tr>
<td>34.5 Whence may we expect our next physical revolution?</td>
<td>1024</td>
</tr>
<tr>
<td>34.6 What is reality?</td>
<td>1027</td>
</tr>
<tr>
<td>34.7 The roles of mentality in physical theory</td>
<td>1030</td>
</tr>
<tr>
<td>34.8 Our long mathematical road to reality</td>
<td>1033</td>
</tr>
<tr>
<td>34.9 Beauty and miracles</td>
<td>1038</td>
</tr>
<tr>
<td>34.10 Deep questions answered, deeper questions posed</td>
<td>1043</td>
</tr>
</tbody>
</table>

**Epilogue**

**Bibliography**

**Index**

xiii