Quantum optics

Marlan O. Scully

Texas A&M University and Max-Planck-Institut für Quantenoptik

M. Suhail Zubairy

Quaid-i-Azam University

Contents

Pr	reface			xix
1	Qua	ntum 1	theory of radiation	1
	1.1	Quan	tization of the free electromagnetic field	2
		1.1.1	Mode expansion of the field	3
		1.1.2	Quantization	4
		1.1.3	Commutation relations between electric and magnetic	
			field components	7
	1.2	Fock	or number states	9
	1.3	Lamb	shift	13
	1.4	Quan	tum beats	16
	1.5	What	is light? – The photon concept	20
		1.5.1	Vacuum fluctuations and the photon concept	20
		1.5.2	Vacuum fluctuations	22
		1.5.3	Quantum beats, the quantum eraser, Bell's theorem,	
			and more	24
		1.5.4	'Wave function for photons'	24
	1.A	Equiv	valence between a many-particle Bose gas and a	
		set of	quantized harmonic oscillators	35
	Prol	blems		40
	Refe	erences	and bibliography	43
2	Coherent and squeezed states of the radiation field			
	2.1	Radia	ation from a classical current	48
	2.2	The c	coherent state as an eigenstate of the annihilation	
		opera	tor and as a displaced harmonic oscillator state	50
	2.3	What	is so coherent about coherent states?	51
	2.4	Some	properties of coherent states	54
	2.5	Squee	ezed state physics	56

	2.6	Sque	ezed states and the uncertainty relation	60
	2.7	The	squeeze operator and the squeezed coherent states	63
		2.7.1	Quadrature variance	65
	2.8	Mult	ti-mode squeezing	66
	Pro	blems		67
	Ref	erences	s and bibliography	70
3	Qua	ntum	distribution theory and partially coherent radiation	72
	3.1	Cohe	erent state representation	73
		3.1.1	Definition of the coherent state representation	75
		3.1.2	Examples of the coherent state representation	77
	3.2	Q-rep	presentation	79
	3.3	The	Wigner-Weyl distribution	81
	3.4	Gene	eralized representation of the density operator and	
			ection between the P -, Q -, and W -distributions	83
	3.5	Q-rep	presentation for a squeezed coherent state	86
	3.A	Verif	ying equations (3.1.12a, 3.1.12b)	90
	3.B	c-nur	mber function correspondence for the Wigner-	
		Weyl	distribution	92
	Prol	blems		94
	Refe	erences	s and bibliography	96
4	Fiel	d-field	and photon-photon interferometry	97
	4.1	The i	interferometer as a cosmic probe	98
		4.1.1	Michelson interferometer and general relativity	98
		4.1.2	The Sagnac ring interferometer	101
		4.1.3	Proposed ring laser test of metric gravitation theories	106
		4.1.4	The Michelson stellar interferometer	108
		4.1.5	Hanbury-Brown-Twiss interferometer	110
	4.2	Photo	on detection and quantum coherence functions	111
	4.3	First-	-order coherence and Young-type double-source	
		expe	riments	115
		4.3.1	Young's double-slit experiment	115
		4.3.2	Young's experiment with light from two atoms	119
	4.4	Seco	nd-order coherence	120
		4.4.1	The physics behind the Hanbury-Brown-Twiss effect	121
		4.4.2	Detection and measurement of squeezed states via	
			homodyne detection	125
		4.4.3	Interference of two photons	131
		4.4.4	Photon antibunching, Poissonian, and sub-Poissonian	
			light	134
	4.5	Photo	on counting and photon statistics	137

	4.A	Classical and quantum descriptions of two-source interference	139
	4.B		140
	Prol	blems	141
	Refe	erences and bibliography	143
5	Åtoi	m—field interaction — semiclassical theory	145
	5.1	Atom-field interaction Hamiltonian	146
		5.1.1 Local gauge (phase) invariance and minimal-coupling Hamiltonian	146
		5.1.2 Dipole approximation and $\mathbf{r} \cdot \mathbf{E}$ Hamiltonian	148
		5.1.3 p · A Hamiltonian	149
	5.2	Interaction of a single two-level atom with a single-	
		mode field	151
		5.2.1 Probability amplitude method	151
		5.2.2 Interaction picture	155
		5.2.3 Beyond the rotating-wave approximation	158
	5.3	Density matrix for a two-level atom	160
		5.3.1 Equation of motion for the density matrix	161
		5.3.2 Two-level atom	162
		5.3.3 Inclusion of elastic collisions between atoms	163
	5.4	Maxwell-Schrödinger equations	164
		5.4.1 Population matrix and its equation of motion	165
		5.4.2 Maxwell's equations for slowly varying field functions	166
	5.5	Semiclassical laser theory	168
		5.5.1 Basic principle	169
		5.5.2 Lamb's semiclassical theory	169
	5.6	A physical picture of stimulated emission and	
		absorption	173
	5.7	Time delay spectroscopy	174
	5.A	Equivalence of the $\mathbf{r} \cdot \mathbf{E}$ and the $\mathbf{p} \cdot \mathbf{A}$ interaction	
		Hamiltonians	178
		5.A.1 Form-invariant physical quantities	178
		5.A.2 Transition probabilities in a two-level atom	180
	5.B	Vector model of the density matrix	183
	5.C	Quasimode laser physics based on the modes of the	
		universe	185
	Prob	blems	187
	Refe	erences and bibliography	190
6	Ator	m–field interaction – quantum theory	193
	6.1	Atom-field interaction Hamiltonian	194

x Contents

	6.2	Interaction of a single two-level atom with a single-mode field	196
		6.2.1 Probability amplitude method	197
		6.2.2 Heisenberg operator method	202
		6.2.3 Unitary time-evolution operator method	204
	6.3		
		between two atomic levels	206
	6.4	Two-photon cascades	210
	6.5	Excitation probabilities for single and double photo-	
		excitation events	213
	Prob	blems	215
	Refe	erences and bibliography	217
7	Lasi	ng without inversion and other effects of atomic	
	cohe	rence and interference	220
	7.1	The Hanle effect	221
	7.2	Coherent trapping – dark states	222
	7.3	Electromagnetically induced transparency	225
	7.4	Lasing without inversion	230
		7.4.1 The LWI concept	230
		7.4.2 The laser physics approach to LWI: simple treatment	232
		7.4.3 LWI analysis	233
	7.5	Refractive index enhancement via quantum coherence	236
	7.6	Coherent trapping, lasing without inversion, and	
		electromagnetically induced transparency via an exact	
	_	solution to a simple model	241
		plems	244
	Refe	rences and bibliography	245
8	Qua	ntum theory of damping – density operator and wave	
	func	tion approach	248
	8.1	General reservoir theory	249
	8.2	Atomic decay by thermal and squeezed vacuum	
		reservoirs	250
		8.2.1 Thermal reservoir	251
		8.2.2 Squeezed vacuum reservoir	253
	8.3	Field damping	255
	8.4	Fokker-Planck equation	256
	8.5	The 'quantum jump' approach to damping	260
		8.5.1 Conditional density matrices and the null measurement	261
		8.5.2 The wave function Monte Carlo approach to damping	263

	Prob Refe		and bibliography	267 269
9	Quantum theory of damping – Heisenberg–Langevin approach			271
	9.1		treatment of damping via oscillator reservoir:	
		_	vian white noise	272
	9.2	Extend	ed treatment of damping via atom and oscillator	
		reservo	irs: non-Markovian colored noise	276
		9.2.1	An atomic reservoir approach	276
			A generalized treatment of the oscillator reservoir problem	278
	9.3	Equation	ons of motion for the field correlation functions	281
	9.4	_	ation-dissipation theorem and the Einstein	
		relation	-	283
	9.5	Atom i	n a damped cavity	284
	Prob	lems	·	289
	Refe	rences a	and bibliography	290
10	Resonance fluorescence			
	10.1	Electr	ic field operator for spontaneous emission	
		from a	a single atom	292
	10.2	An in	troduction to the resonance fluorescence	
		spectr	um	293
		10.2.1	Weak driving field limit	293
		10.2.2	The strong field limit: sidebands appear	295
		10.2.3	The widths of the three peaks in the very strong field limit	296
	10.3	Theor	ry of a spectrum analyzer	298
	10.3		single-time to two-time averages: the Onsager—	270
	10.7		egression theorem	300
	10.5		omplete resonance fluorescence spectrum	302
	10.5	10.5.1	Weak field limit	305
		10.5.1	Strong field limit	305
	10.6		n antibunching	307
	10.7		-	309
		Resonance fluorescence from a driven V system		311
			ic field operator in the far-zone approximation	311
	10.B		quations of motion for and exact solution of the	217
		· ·	y matrix in a dressed-state basis	316
		10.B.1	Deriving the equation of motion in the dressed-state	216
		10 D 2	basis Salving the acceptions of motion	316
		10.B.2	Solving the equations of motion	317

xii Contents

	10.C	The equations of motion for and exact solution of the	
		density matrix in the bare-state basis	320
	10.D	Power spectrum in the stationary regime	321
	10.E	Derivation of Eq. (10.7.5)	322
	Probl	ems	323
	Refer	ences and bibliography	325
11	Quan	tum theory of the laser – density operator approach	327
	11.1	Equation of motion for the density matrix	328
	11.2	Laser photon statistics	336
		11.2.1 Linear approximation $(\mathcal{B} = 0)$	337
		11.2.2 Far above threshold $(\mathscr{A} \gg \mathscr{C})$	338
		11.2.3 Exact solution	338
	11.3	P-representation of the laser	340
	11.4	Natural linewidth	341
		11.4.1 Phase diffusion model	342
		11.4.2 Fokker-Planck equation and laser linewidth	345
	11.5	Off-diagonal elements and laser linewidth	346
	11.6	Analogy between the laser threshold and a second-	
		order phase transition	349
	11.A	Solution of the equations for the density matrix	
		elements	352
	11.B	An exact solution for the P-representation of the laser	354
	Probl	ems	358
	Refer	ences and bibliography	360
12	Quan	tum theory of the laser – Heisenberg–Langevin approach	362
	12.1	A simple Langevin treatment of the laser linewidth	
		including atomic memory effects	362
	12.2	Quantum Langevin equations	367
	12.3	c-number Langevin equations	373
	12.4	Photon statistics and laser linewidth	376
	Probl	ems	380
	Refer	ences and bibliography	381
13	Theor	ry of the micromaser	383
	13.1	Equation of motion for the field density matrix	384
	13.2	Steady-state photon statistics	386
	13.3	Preparation of number state in a high-Q micromaser	389
		13.3.1 State reduction	390
		13.3.2 Trapping states	393
	13.4	Linewidth of a micromaser	396

Contents

	Prob	lems	398		
	Refe	rences and bibliography	400		
14	Corre	elated emission laser: concept, theory, and analysis	402		
	14.1	Correlated spontaneous emission laser concept	403		
	14.2	Hanle effect correlated emission laser via density			
		matrix analysis	405		
	14.3	Quantum beat laser via pictorial treatment	413		
	14.4	Holographic laser	418		
	14.5	Quantum phase and amplitude fluctuations	423		
	14.6	Two-photon correlated emission laser	426		
		14.6.1 Theory	426		
		14.6.2 Heuristic account of a two-photon CEL	430		
		Spontaneous emission noise in the quantum beat laser	433		
	Prob	lems	437		
	Refer	rences and bibliography	440		
15	Phase	e sensitivity in quantum optical systems: applications	442		
	15.1	The CEL gyro	442		
	15.2	Linear amplification process: general description	446		
	15.3	Phase-insensitive amplification in a two-level system	448		
	15.4	Phase-sensitive amplification via the two-photon			
		CEL: noise-free amplification	450		
	15.5	Laser with an injected squeezed vacuum	452		
	15.A	Analysis of the CEL gyro with reinjection	454		
	Probl	lems	457		
	Refer	rences and bibliography	458		
16	Squeezing via nonlinear optical processes				
	16.1	Degenerate parametric amplification	460		
	16.2	Squeezing in an optical parametric oscillator	463		
	16.3	Squeezing in the output of a cavity field	467		
	16.4	Four-wave mixing	471		
		16.4.1 Amplification and oscillation in four-wave mixing	471		
		16.4.2 Squeezing in four-wave mixing	475		
	16.A	Effect of pump phase fluctuations on squeezing in			
		degenerate parametric amplification	476		
	16.B	Quantized field treatment of input-output formalism			
		leading to Eq. (16.3.4)	480		
	Probl	'ems	482		
	Refer	ences and bibliography	484		

xiv Contents

17	Atom	optics	487
•		Mechanical effects of light	488
	1,.1	17.1.1 Atomic deflection	488
		17.1.2 Laser cooling	489
		17.1.3 Atomic diffraction	490
		17.1.4 Semiclassical gradient force	493
	17.2	Atomic interferometry	494
	_,	17.2.1 Atomic Mach–Zehnder interferometer	494
		17.2.2 Atomic gyroscope	496
	17.3	Quantum noise in an atomic interferometer	498
	17.4	Limits to laser cooling	499
		17.4.1 Recoil limit	499
		17.4.2 Velocity selective coherent population trapping	501
	Probl	ems	503
	Refer	ences and bibliography	504
18	The I	EPR paradox, hidden variables, and Bell's theorem	507
	18.1	The EPR 'paradox'	508
	18.2	Bell's inequality	513
	18.3	Quantum calculation of the correlations in Bell's	
		theorem	515
	18.4	Hidden variables from a quantum optical perspective	520
	18.5	Bell's theorem without inequalities: Greenberger-	
		Horne–Zeilinger (GHZ) equality	529
	18.6	Quantum cryptography	531
		18.6.1 Bennett-Brassard protocol	531
		18.6.2 Quantum cryptography based on Bell's theorem	532
	18.A	Quantum distribution function for a single spin-up	
		particle	533
		Quantum distribution function for two particles	534
	Proble		536
	Refer	ences and bibliography	539
19	Quan	tum nondemolition measurements	541
	19.1	Conditions for QND measurements	542
	19.2	QND measurement of the photon number via the	
		optical Kerr effect	543
	19.3	QND measurement of the photon number by	
		dispersive atom-field coupling	547
	19.4	QND measurements in optical parametric processes	554
	Proble		558 560
	References and bibliography		

20	Quan	ntum optical tests of complementarity	561
	20.1	A micromaser which-path detector	564
	20.2	The resonant interaction of atoms with a microwave	
		field and its effect on atomic center-of-mass motion	566
	20.3	Quantum eraser	568
	20.4	Quantum optical Ramsey fringes	573
	20.A	Effect of recoil in a micromaser which-path detector	576
	Probl	lems	579
	Refer	rences and bibliography	580
21	Two-	photon interferometry, the quantum measurement	
	probl	em, and more	582
	21.1	The field-field correlation function of light scattered from two atoms	582
		21.1.1 Correlation function $G^{(1)}(\mathbf{r},t)$ generated by scatter-	
		ing from two excited atoms	585
		21.1.2 Excitation by laser light	585
		21.1.3 Using three atomic levels as a which-path flag	586
	21.2	The field-field and photon-photon correlations of	
		light scattered from two multi-level atoms: quantum	
		eraser	587
		21.2.1 Alternative photon basis	590
	21.3	Bell's inequality experiments via two-photon	
		correlations	592
	21.4	1	595
		21.4.1 Two-photon correlations produced by atomic	
		cascade emission	595
		21.4.2 Franson-Chiao interferometry	597
	21.5	Two-particle interferometry via nonlinear down-	
		conversion and momentum selected photon pairs	600
		21.5.1 Two-site down-conversion interferometry	601
	21.6	A vacuum-fluctuation picture of the ZWM	607
	24.5	experiment	607
	21.7	High-resolution spectroscopy via two-photon cascade	C10
		interferometry	610
		Scattering from two atoms via an operator approach	614
	21.B	Calculation of the two-photon correlation function in	~ ~
	21.5	atomic cascade emission	616
	21. C	Calculation of the joint count probability in Franson-	C4.0
		Chiao interferometry	618

xvi	Contents	
Problems	621	
References and bibliography	622	
Index	624	