
WILEY SCIENCE PAPERBACK SERIES

Absorption and Scattering of Light by Small Particles

Craig F. Bohren
Donald R. Huffman

Absorption and Scattering of Light by Small Particles

CRAIG F. BOHREN

Associate Professor of Meteorology The Pennsylvania State University

DONALD R. HUFFMAN

Professor of Physics The University of Arizona

A Wiley-Interscience Publication JOHN WILEY & SONS

This text is printed on acid-free paper. @

Copyright © 1983 by John Wiley & Sons, Inc.

Wiley Professional Paperback Edition Published 1998.

All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (508) 750-8400, fax (508) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

Library of Congress Cataloging in Publication Data:

Bohren, Craig F., 1940-

Absorption and scattering of light by small particles. "A Wiley-Interscience publication."

Includes bibliographical references and index.

Aerosols—Optical properties
 Absorption of light.
 Light—Scattering.
 Huffman, Donald R.,
 1935—
 Title.

QC882.B63 1983 535'.3 82-20312

ISBN 0-471-05772-X

ISBN 0-471-29340-7 Wiley Professional Paperback Edition

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

PART 1—BASIC THEORY

Chapter 1. Introduction, 3

1.1	Physical Basis for Scattering and Absorption	3		
1.2	Scattering by Fluctuations and by Particles	4		
1.3	Physics of Scattering by a Single Particle	7 9		
1.4	Collections of Particles			
1.5	The Direct and Inverse Problem	9		
	Notes and Comments	11		
	Chapter 2. Electromagnetic Theory, 12			
2.1	Field Vectors and the Maxwell Equations	12		
2.2	Time-Harmonic Fields	14		
2.3	Frequency-Dependent Phenomenological Coefficients	15		
2.4	Spatial Dispersion	22		
2.5	Poynting Vector	23		
2.6	Plane-Wave Propagation in Unbounded Media	25		
2.7	Reflection and Transmission at a Plane Boundary	30		
2.8	Reflection and Transmission by a Slab	36		
2.9	Experimental Determination of Optical Constants		Experimental Determination of Optical Constants	41
2.10				
2.11	Polarization	44		
	Notes and Comments	56		
	Chapter 3. Absorption and Scattering by an Arbitrary Particle, 57			
3.1	General Formulation of the Problem	57		
3.2	The Amplitude Scattering Matrix	61		
3.3	Scattering Matrix	63		
3.4	Extinction, Scattering, and Absorption	69		
	Notes and Comments	51		

XII CONTENTS

Chapter 4. Absorption and Scattering by a Sphere	e, 8∂	2
--	-------	---

4.1	Solutions to the Vector Wave Equations	83	
4.2	Expansion of a Plane Wave in Vector Spherical Harmonics	89	
4.3			
4.4			
4.5	Asymmetry Parameter and Radiation Pressure		
4.6	Radar Backscattering Cross Section	120	
4.7	Thermal Emission	123	
4.8	Computation of Scattering Coefficients and Cross Sections	126	
	Notes and Comments	129	
	Chapter 5. Particles Small Compared with the Wavelength, 130		
5.1	Sphere Small Compared with the Wavelength	130	
5.2	The Electrostatics Approximation	136	
5.3	Ellipsoid in the Electrostatics Approximation	141	
5.4	Coated Ellipsoid	148	
5.5	The Polarizability Tensor	150	
5.6	Anisotropic Sphere	152	
5.7	Scattering Matrix	154	
	Chapter 6. Rayleigh-Gans Theory, 158		
6.1	Amplitude Scattering Matrix Elements	158	
6.2	Homogeneous Sphere	162	
6.3	Finite Cylinder	163	
	Notes and Comments	165	
	Chapter 7. Geometrical Optics, 166		
7.1	Absorption and Scattering Cross Sections	166	
7.2	Angular Distribution of the Scattered Light: Rainbow Angles	174	
7.3	Scattering by Prisms: Ice Crystal Haloes	178	
	Notes and Comments	180	
	Chapter 8. A Potpourri of Particles, 181		
8.1	Coated Sphere	181	
8.2	Anisotropic Sphere	184	
8.3	Optically Active Particles	185	
8.4	Infinite Right Circular Cylinder	194	
8.5	Inhomogeneous Particles: Average Dielectric Function	213	
8.6	A Survey of Nonspherical Particles, Regular and Irregular	219	
	Notes and Comments	""	

CONTENTS	viii

CONTENTS	xiii
PART 2—OPTICAL PROPERTIES OF BULK MATTER	

	Chapter 9. Classical Theories of Optical Constants, 227	
9.1	The Lorentz Model	228
9.2	The Multiple-Oscillator Model	244
9.3	The Anisotropic Oscillator Model	247
9.4	The Drude Model	251
9.5	The Debye Relaxation Model	259
9.6	General Relationship Between ϵ' and ϵ''	265
	Notes and Comments	267
	Chapter 10. Measured Optical Properties, 268	
10.1	Optical Properties of an Insulating Solid: MgO	268
10.2	Optical Properties of a Metal: Aluminum	271
10.3	Optical Properties of a Liquid: Water	2 73
10.4	A Comment on the Magnitude of k	279
10.5	Validity of Bulk Optical Constants in Small-Particle	
	Calculations	280
10.6	Summary of Absorption Mechanism and Temperature Effects	281
	Notes and Comments	283
	PART 3—OPTICAL PROPERTIES OF PARTICLES	
	Chapter 11. Extinction, 287	
1.1	Extinction = Absorption + Scattering	287
1.2	Extinction Survey	289
1.3	Some Extinction Effects in Insulating Spheres	295
1.4	Ripple Structure	30 0
1.5	Absorption Effects in Extinction	305
1.6	Extinction Calculations for Nonspherical Particles	310
1.7	Extinction Measurements	316
1.8	Extinction: A Synopsis	323
	Notes and Comments	324
	Chapter 12. Surface Modes in Small Particles, 325	
٠.		20.

12.1	Surface Modes in Small Spheres	326
12.2	Surface Modes in Nonspherical Particles	342
12.3	Vibrational Modes in Insulators	357
12.4	Electronic Modes in Metals	17.0
	Notes and Comments	(+)

er fau	CONTENTS
xiv	CONTENTS

Chapter 13. Angular Dependence of Scattering, 381

13.1	Scattering of Unpolarized and Linearly Polarized Light	381
13.2	Techniques of Measurement and Particle Production	389
13.3	Measurements on Single Particles	394
13.4	Some Theoretical and Experimental Results	397
13.5	Particle Sizing	403
13.6	Scattering Matrix Symmetry	406
13.7	Measurement Techniques for the Scattering Matrix	414
13.8	Some Results for the Scattering Matrix	419
13.9	Summary: Applicability of Mie Theory	427
	Notes and Comments	428
	Chapter 14. A Miscellany of Applications, 429	
14.1	The Problem of Optical Constants	430
14.2	Atmospheric Aerosols	434
14.3	Noctilucent Clouds	448
14.4	Rainfall Measurements with Radar	4 54
14.5	Interstellar Dust	457
14.6	Pressure Dependence of Intrinsic Optical Spectra	
	Using Small Particles	468
14.7	Giaever Immunological Slide	469
14.8	Microwave Absorption by Macromolecules	472

APPENDIXES COMPUTER PROGRAMS

Appendix A. Homogeneous Sphere, 477

Appendix B. Coated Sphere, 483

Appendix C. Normally Illuminated Infinite Cylinder, 491

References, 499

Index, 521