Quantum cryptography

Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden

Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland

(Published 8 March 2002)

Quantum cryptography could well be the first application of quantum mechanics at the single-quantum level. The rapid progress in both theory and experiment in recent years is reviewed, with emphasis on open questions and technological issues.

CONTENTS

I.	In	roduction	145
II.	А	Beautiful Idea	146
	A.	The intuition	146
	B.	Classical cryptography	147
		1. Asymmetrical (public-key) cryptosystems	147
		2. Symmetrical (secret-key) cryptosystems	148
		3. The one-time pad as "classical	
		teleportation"	148
	C.	The BB84 protocol	149
		1. Principle	149
		2. No-cloning theorem	149
		3. Intercept-resend strategy	150
		4. Error correction, privacy amplification, and	
		quantum secret growing	150
		5. Advantage distillation	151
	D.	Other protocols	152
		1. Two-state protocol	152
		2. Six-state protocol	152
		3. Einstein-Podolsky-Rosen protocol	152
		4. Other variations	153
	E.	Quantum teleportation as a "quantum one-time	
		pad"	154
	F.	Optical amplification, quantum nondemolition	
		measurements, and optimal quantum cloning	154
III.	Te	chnological Challenges	155
	А.	Photon sources	155
		1. Faint laser pulses	156
		2. Photon pairs generated by parametric	
		downconversion	156
		3. Photon guns	157
	В.	Quantum channels	158
		1. Single-mode fibers	158
		2. Polarization effects in single-mode fibers	158
		3. Chromatic dispersion effects in single-mode	
		fibers	160
		4. Free-space links	160
	C.	Single-photon detection	161
		1. Photon counting at wavelengths below 1.1	
		μ m	163
		2. Photon counting at telecommunications	
		wavelengths	163
	D.	Quantum random-number generators	164
TX 7	E.	Quantum repeaters	164
1 V.	EX	perimental Quantum Cryptography with Faint	175
	La	ser ruises	165
	A.	Quantum bit error rate	166
	В.	Polarization coding	167
	C.	The double Meeh Zahadan inclose and the	108
		The double Wach-Zennder Implementation "Plug and play" systems	170
		2. 1 lug-allu-play systems	1/1

D. Frequency coding	173	
E. Free-space line-of-sight applications	174	
F. Multi-user implementations	175	
V. Experimental Quantum Cryptography with Photon		
Pairs	175	
A. Polarization entanglement	176	
B. Energy-time entanglement	177	
1. Phase coding	177	
2. Phase-time coding	179	
3. Quantum secret sharing	180	
VI. Eavesdropping	180	
A. Problems and objectives	180	
B. Idealized versus real implementation	180	
C. Individual, joint, and collective attacks	181	
D. Simple individual attacks: Intercept-resend and		
measurement in the intermediate basis	181	
E. Symmetric individual attacks	182	
F. Connection to Bell's inequality	185	
G. Ultimate security proofs	185	
H. Photon number measurements and lossless		
channels	187	
I. A realistic beamsplitter attack	188	
J. Multiphoton pulses and passive choice of states	188	
K. Trojan horse attacks	189	
L. Real security: Technology, cost, and complexity	189	
VII. Conclusions	190	
Acknowledgments		
References		

I. INTRODUCTION

Electrodynamics was discovered and formalized in the 19th century. The 20th century was then profoundly affected by its applications. A similar adventure may be underway for quantum mechanics, discovered and formalized during the last century. Indeed, although the laser and semiconductor are already common, applications of the most radical predictions of quantum mechanics have only recently been conceived, and their full potential remains to be explored by the physicists and engineers of the 21st century.

The most peculiar characteristics of quantum mechanics are the existence of indivisible quanta and of entangled systems. Both of these lie at the root of quantum cryptography (QC), which could very well be the first commercial application of quantum physics at the singlequantum level. In addition to quantum mechanics, the 20th century has been marked by two other major scientific revolutions: information theory and relativity. The status of the latter is well recognized. It is less well known that the concept of information, nowadays measured in bits, and the formalization of probabilities are