### Aufbau von faserbasierten Interferometern für die Quantenkryptografie

- Gehäuse, Phasenstabilisierung, Fasereinbau -

Masterarbeit
im Studiengang Elektrotechnik und
Informationstechnik
Vertiefungsrichtung Photonik

an der



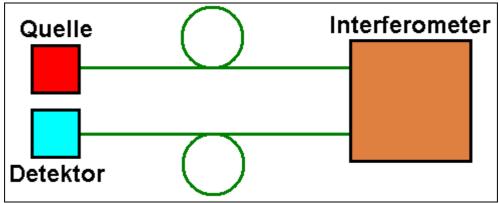
in Kooperation mit der



# vorgelegt von **Björnstjerne Zindler**

geboren am 13. November 1966 in Görlitz

eingereicht am 21. November 2011


Erstgutachter: Herr Professor Dr. A. Richter Zweitgutachter: Herr Professor Dr. O. Benson

Meiner Mutter gewidmet \*03. Juli 1940 +22. September 2010

## Transmissionsmessungen am Probeinterferometer "I" unter verschiedenen Bedingungen

#### • Versuchsaufbau 1:

Darstellung des Versuchsaufbaus, Spannung am Piezoring 0V.

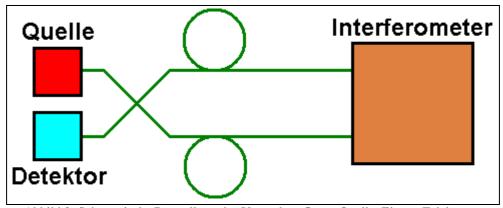


Abbild 1: Schematische Darstellung des Versuchsaufbaus. Quelle: Eigene Zeichnung.

#### **Messwerte:**

| Messung | Detektor | Quelle   |
|---------|----------|----------|
| Ø       | 215,7 μW | 1,859 mW |

#### **Auswertung:**


$$D_1 = 10 \cdot \lg \frac{215.7 \cdot 10^{-6}}{1,859 \cdot 10^{-3}}$$

 $\Rightarrow$ 

$$D_1 = -9,4db$$

#### • Versuchsaufbau 2:

Darstellung des Versuchsaufbaus, Spannung am Piezoring 0V.

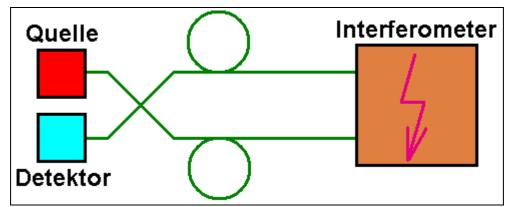


Abbild 2: Schematische Darstellung des Versuchsaufbaus. Quelle: Eigene Zeichnung.

#### **Messwerte:**

| Messung | Detektor | Quelle   |
|---------|----------|----------|
| Ø       | 261,3 μW | 1,859 mW |

#### **Auswertung:**


$$D_1 = 10 \cdot \lg \frac{261.3 \cdot 10^{-6}}{1,859 \cdot 10^{-3}}$$

 $\Rightarrow$ 

$$D_1 = -8,5db$$

#### • Versuchsaufbau 3:

Darstellung des Versuchsaufbaus, Spannung am Piezoring einstellbar.



Abbild 3: Schematische Darstellung des Versuchsaufbaus. Quelle: Eigene Zeichnung.

#### Messwerte:

| Messung | Detektor | Quelle   |
|---------|----------|----------|
| 0 V     | 262,3 μW | 1,859 mW |
| 100 V   | 262,3 μW | 1,859 mW |
| 200 V   | 262,3 μW | 1,859 mW |
| 300 V   | 262,3 μW | 1,859 mW |
| 400 V   | 262,3 μW | 1,859 mW |
| 500 V   | 262,2 μW | 1,859 mW |
| 600 V   | 262,2 μW | 1,859 mW |
| 700 V   | 262,2 μW | 1,859 mW |
| 800 V   | 262,2 μW | 1,859 mW |
| 900 V   | 262,2 μW | 1,859 mW |
| 1 000 V | 262,2 μW | 1,859 mW |

#### **Auswertung:**

$$D_1 = \left(10 \cdot \lg \frac{262, 3 \cdot 10^{-6}}{1,859 \cdot 10^{-3}} - 10 \cdot \lg \frac{262, 2 \cdot 10^{-6}}{1,859 \cdot 10^{-3}}\right) \cdot \frac{1}{0 - 1000}$$

 $\Rightarrow$ 

$$D_1 = \lg \sqrt{\frac{262, 2 \cdot 10^{-6}}{262, 3 \cdot 10^{-6}}}$$

 $\Rightarrow$ 

$$D_1 = -0,0000165 \frac{db}{V}$$

\_\_\_\_\_\_

### • Zusammenfassung:

Die Transmissionsdämpfung durch das Interferometer wird als etwas zu hoch angesehen.

Es existiert ein Dämpfungsunterschied zwischen beiden Aus- bzw. Eingängen.

Der Piezoring bringt keine spannungsabhängige Dämpfung in das System mit hinein.