SALA (LA La franciaca

Deutsche Demokratische Republik

Stahlbau Stahlbau

STAHLTRAGWERKE

Berechnung

Bauliche Durchbildung

TGI 13 500

Gruppe 135 000

Стальное строительство Несущие конструкции из стали Расчёт Строительная конструкция Structural Steel Engineering
Steel Supporting Structures
Calculation Structural Design

Bauinformation Zentrale Fachbibliothek Bauwesen

Verbindlich ab 1.10.1972

Dieser Standard gilt nur in Verbindung mit den Standards für Stahltragwerke der einzelnen Stahlbau-Fachgebiete.

Abweichungen von diesem Standard sind zulässig, wenn sie durch Theorie oder Versuche ausreichend begründet und von der zuständigen Prüfstelle genehmigt sind.

Maße in mm

INHA	ALITSVERZEICHNIS Worbindlichkeit aufgehoben	
	ohne Ersalz -	
1.	Allgemeines It AO	101,92 4.82
2.	Nachweise II. AU 965	3
3.	Zulässige Spannungen	8
4.	Grundsätzliche Regeln für alle Bauteile	15
5.	Zusätzliche Regeln für genietete und geschraubte Bauteile	20
6.	Zusätzliche Regeln für geschweißte Bauteile	25
7.	Zuständige Prüfstellen	37
1.	ALIGEMEINES	

1.1. Lastspielgruppen und Ausführungsgruppen

Fur die Berechnung sind die Stahltragwerke nach Art der Beanspruchung in eine der drei folgenden Lastspielgruppen einzustufen:

Fortsetzung Seite 2 bis 40

Verantwortlich: VEB Metalleichtbaukombinat Bestätigt: 20,3,1972, Amt für Standardisierung, Berlin

Tabelle 1 Lastspielgruppen und Ausführungsgruppen

Lastspiel- gruppe für die Berech- nung	Ausführungs- gruppe für bauliche Durchbildung und Aus- führung	Bemerkungen
A	A	Bauteile, die einer sehr oft (mehr als 500 000 mal) wiederholten schwellenden oder wechseln-den Beanspruchung ausgesetzt sind: Berechnung auf Dauerfestigkeit
В	A	Bautelle, die einer häufig (höchstens 500 000 mal) schwellenden oder wechselnden Beanspru- chung ausgesetzt sind: Berechnung auf Zeitfestigkeit
С	С	Statisch beanspruchte Bauteile und Bauteile, die nur selten (höchstens 60 000 mal) einer schwellenden oder wechselnden Beanspruchung ausgesetzt sind: Kein Nachweis der Ermüdungsfestigkeit

Für die bauliche Durchbildung und die Ausführung werden die Tragwerke nur noch in die Ausführungsgruppen A und C eingestuft, wobei Tragwerke der Lastspielgruppe A und B in Ausführungsgruppe A und Tragwerke der Lastspielgruppe C in Ausführungsgruppe C gehören.

Bauteile der Lastspielgruppen A und B dürfen in Ausführungsgruppe C eingestuft werden, wenn beim Ermüdungsfestigkeitsnachweis nach Abschnitt 2.3.

max $\sigma \leq$ 0,5 zul $\sigma_{\rm D}$ und/oder der Grenzwert nach Gleichung (7) und (8) nicht größer als 0,5

oder wenn

 $x \ge 0.9$

ist, Wenn offensichtlich ist, daß diese Forderungen eingehalten werden, darf der Nachweis entfallen.

Die Festlegung dieses letzten Absatzes gilt nicht für Brücken im Verkehrsbau.

1.2. Werkstoffe

Als Grundworkstoffe sind St 38 und St 52 nach TGL 7960 sowie St $45/60^{x}$) nach TGL 101-014 zulässig. St $30/45^{xx}$) und St $35/50^{xx}$) sowie ausnahmsweise St 34 und St 42 nach TGL 7960 dürfen mit Genehmigung der zuständigen Prüfstelle verwendet werden.

Den Berechnungsvorschriften liegen die Werte nach Tabelle 2 zugrunde, die für Temperaturen bis zu etwa \div 60 $^{\rm o}$ C gelten. Bei höherer Temperatur ist die Verminderung der Streckgrenze zu berücksichtigen.

x) Dieser Stahl ist für Brücken im Verkehrsbau nicht zugelassen.

xx) Zur Zeit noch nicht standardisiert.

Tabelle 2 Werkstoffkennwerte

Stahl∞ marke	Elastizi- tätsmodul E kp/cm ²	Schub- modul G kp/cm ²	Streck- grenze σ_F kp/cm ²	Warme- dehnzahl a t 1/grd
st 38			2400	
St 52	2 100 000	810 000	3600	0,000 012
St 45/60			4500	

In Tabelle 2 nicht genannte Stähle - auch Importstähle - sind unter Zugrundelegung der chemischen Zusammensetzung und der physikalischen Werte den vorstehenden Stählen zuzuordnen, webei Abschnitt 3.1. zu berücksichtigen 1st.

Bei Verwendung der Stähle in Schweißkonstruktionen muß die Schweißeignung für das vorgesehene Schweißverfahren gewährleistet sein.

Die Verwendung verschiedener Werkstoffe im gleichen Querschnitt ist zulässig, Bei verschiedenen Elastizitätsmoduln ist deren Einfluß auf die Spannungsverteilung zu berücksichtigen,

Niete und Schrauben müssen aus Stählen nach TGL 6545 oder TGL 10 826 oder vergleichbaren Stählen bestehen.

Die Schweißzusatzwerkstoffe sind auf den zu schweißenden Grundwerkstoff und bei Sortenwechsel untereinander abzustimmen. Unter dieser Voraussetzung ist der Nahtaufbau mit verschiedenen Schweißdrahtsorten statthaft, auch wenn dabei das Schweißverfahren wechselt.

2. NACHWEISE

Im Regelfalle sind folgende Nachweise zu führen:

Statischer Spannungsnachweis Stabilitätsnachweis Ermüdungsfestigkeitsnachweis Formänderungsnachweis Standsicherheitsnachweis

Offensichtlich nicht maßgebende Nachweise dürfen entfallen, Die für die speziellen Tragwerke oder sonstigen Konstruktionen erforderlichen Nachweise sind den dafür geltenden Vorschriften zu entnehmen,

2.1. Statischer Spannungsnachweis

Durch den statischen Spannungsnachweis ist die ausreichende Sicherheit gegen Fließen oder Bruch des Grundwerkstoffes und der Verbindungsmittel bei Bemessung auf statische Festigkeit nachzuweisen. Er ist getrennt für die Grenzlastfälle H, HZ und S zu führen.

Es 1st nachzuweisen, daß die größten rechnerischen Normal- und Schubspannungen (Grenzspannungen max σ , max τ) die zulässigen Spannungen (zul σ , zul τ) nach Abschnitt 3.1. nicht überschreiten:

$$\max \sigma_{x} \leq zul \sigma_{x}; \max \sigma_{y} \leq zul \sigma_{y}; \max \tau \leq zul \tau \tag{1}$$

Bel Schweißnähten bedeutet:

ox Beanspruchung rechtwinklig zur Naht

 Beanspruchung parallel zur Naht; sie darf bei statisch bean- spruchten Schweißnähten im allgemeinen unberücksichtigt blei-ben.

Bei zusammengesetzten Beanspruchungen, z.B. Längskraft und Biegemoment, Querkraft und Drillmoment, sind die einzelnen Anteile aus der gleichen Laststellung und Lastkombination zu bestimmen.

Zwei in einer Schnittfläche rechtwinklig zueinander wirkende Schubspannungen τ_{xy} und τ_{xz} sind zur resultierenden Schubspannung zusammenzusetzen. Diese darf die zulässige Schubspannung (zul 7) nicht überschreiten:

$$\tau_{xr} = \sqrt{\tau_{xy}^2 + \tau_{xz}^2} \le zul\tau \tag{2}$$

Beim Zusammenwirken zweier rechtwinklig zueinander stehender Normalspannungen oder größerer Schubspannungen und Normalspannungen ist zusätzlich zu Gleichung (1) nachzuweisen:

$$\left(\frac{\sigma_{x}}{zul\sigma_{x}}\right)^{2} + \left(\frac{\sigma_{y}}{zul\sigma_{y}}\right)^{2} - \frac{\sigma_{x}}{zul\sigma_{x}}\frac{\sigma_{y}}{zul\sigma_{y}} + \left(\frac{\tau}{zul\tau}\right)^{2} \leq 1 \tag{3}$$

Dieser Nachweis ist zu führen für:

max σ_x und zugehörige Werte σ_y und τ

max σ_v und zugehörige Werte σ_x und τ

max t und zugehörige Werte σ_x und σ_y ,

sofern nicht von vornherein feststeht, welche Kombination die ungünstigste ist.

Die vorhandenen Spannungen sind mit Vorzeichen, die zulässigen Spannungen nach Tabelle 3 mit ihren absoluten Beträgen einzusetzen.

Bei Schweißnähten der Lastspielgruppe C darf die Spannung σ_y parallel zur Naht im allgemeinen unberücksichtigt bleiben; sie ist aber zu berücksichtigen, wenn nur σ_x und σ_y wirken. Z. B. gilt beim Trägeranschluß oder bei einer Halsnaht mit Radlasteinfluß (σ_y)

$$\left(\frac{\sigma_{x}}{zul\sigma_{x}}\right)^{2}+\left(\frac{\tau}{zul\tau}\right)^{2}\leq1$$

Sind zusätzlich noch Schubspannungen τ_{xz} vorhanden, so ist für τ die resultierende Schubspannung (τ_{xr}) nach Gleichung (2) einzusetzen,

In Kehlnähten ist die Beanspruchung rechtwinklig zur Naht stets als Normalspannung anzusetzen. Zwei rechtwinklig zueinander und rechtwinklig zur Naht wirkende Normalspannungen σ_1 und σ_2 sind geometrisch zu addieren.

$$\sigma_{\mathbf{r}} = \sqrt{\sigma_1^2 + \sigma_2^2} \leq zul \sigma_{\mathbf{x}}, \tag{4}$$

wobel zul σ_x für Zugbeanspruchung anzusetzen ist, wenn die größere der Einzzelspannungen σ_4 eder σ_2 eine Zugspannung ist.

Als Schubspannung (7) ist in Kehlnähten nur die Schubspannung in Längs-richtung der Naht anzusetzen. Das Zusammenwirken von σ_r und 7 ist nach Gleichung (3a) zu berechnen.

Die Schubspannung im Stegblech gerader vollwandiger Träger darf in Gleichung (3), (3a), (7) und (7a) vereinfacht

$$\tau \approx \frac{Q}{F_{\text{Steg}}}$$
 (5)

gesetzt werden.

Fur Schrauben und Niete ist der Nachweis nach Gleichung (3) oder (3a) nicht erforderlich.

Räumliche Spannungszustände dürfen auf den ungünstigsten ebenen (zweischsigen) Spannungszustand zurückgeführt werden,

2.2. Stabilitätsnachweis

Durch den Stabilitätsnachweis ist die ausreichende Sicherheit gegen Knicken, Kippen und Beulen nachzuweisen. Er ist nach TGL 13 503 Bl. 1 und 2 zu führen.

2.3. Ermüdungsfestigkeitsnachweis

Durch den Dauer- oder Zeitfestigkeitenachweis ist die ausreichende Sicherheit gegen Bruch des Grundwerkstoffes und der Verbindungsmittel bei häufig wiederholter schwellender oder wechselnder Beanspruchung nachzuweisen.

Als Dauerfestigkeit gilt die unter nachstehenden Voraussetzungen $2 \cdot 10^6$ mal ertragbare Oberspannung (max σ oder max τ), als Zeitfestigkeit die etwa 0,5 · 10^6 mal aufnehmbare Oberspannung.

Bei Bauteilen der Lastspielgruppe A ist die Dauerfestigkeit nachzuweisen, bei solchen der Lastspielgruppe B die Zeitfestigkeit. Diese Nachweise sind im Regelfall nur für Grenzlastfall H zu führen. Bei Bauteilen der Lastspielgruppe C entfällt der Nachweis.

Die Spannungen sind unter Berücksichtigung der dynamischen Kräfte und Schwingbeiwerte zu berechnen, Druckspannungen sind ehne Knickzahl (ω) einzuführen.

Bei Bauteilen mit großen Verformungen sind gegebenenfalls die Spannungen aus Druck und Biegung nach der Theorie II. Ordnung zu berechnen. Die Lasten sind dabei ohne Sicherheitszahl (ν) einzusetzen.

Die ideelle Querkraft (Q1) nach TGL 13 503 Bl.1 und 2 ist als Schwellast ($\chi \ge 0$) zu berücksichtigen, wenn die Längskraft, aus der sie entsteht, eine Wechsel- oder Schwellast ist.

Es 1st nachzuweisen, daß die größten aus den vorgegebenen Belastungsfällen errechneten Normal- und Schubspannungen max σ_x , max σ_y und max τ die zu- lässigen Spannungen nach Abschnitt 3.2. nicht überschreiten:

$$\max \sigma_{x} \leq \operatorname{zul} \sigma_{Dx}; \max \sigma_{y} \leq \operatorname{zul} \sigma_{Dy}; \max \tau \leq \operatorname{zul} \tau_{D} \tag{6}$$

Das Zusammenwirken größerer Normal- und Schubspannungen ist - zusätzlich zu Gleichung (6) - nach Gleichung (7) nachzuweisen.

$$\frac{1}{2} \left| \frac{\sigma_{X}}{zul \sigma_{Dx}} + \frac{\sigma_{y}}{zul \sigma_{Dy}} \pm \sqrt{\left(\frac{\sigma_{X}}{zul \sigma_{Dx}} - \frac{\sigma_{y}}{zul \sigma_{Dy}}\right)^{2} + 4\left(\frac{\tau}{zul \sigma_{X}}\right)^{2}} \right| \leq 1 \quad (7)$$

Dieser Nachweis ist zu führen für

max σ_x und zugehörige Werte min σ_x , σ_{y1} , σ_{y2} , τ_1 und τ_2

max o v und zugehörige Werte

max 7 und zugehörige Werte,

sofern nicht von vornherein feststeht, welche Kombination die ungünstigste ist.

Die vorhandenen Spannungen sind mit Vorzeichen, die zulässigen Spannungen nach Abschnitt 3.2, sind mit ihren absoluten Beträgen einzusetzen3). Das Verzeichen der Wurzel ist gleich dem der Summe

$$(\frac{\sigma_x}{zul \sigma_{Dx}} + \frac{\sigma_y}{zul \sigma_{Dy}})$$

Bei einachsiger Biegung gilt somit z. B.

$$\frac{1}{2} \left| \frac{\sigma_{x}}{zul \sigma_{Dx}} \pm \sqrt{\left(\frac{\sigma_{x}}{zul \sigma_{Dx}}\right)^{2} + 4\left(\frac{\tau}{zul \sigma_{D}}\right)^{2}} \right| \leq 1$$
 (7a)

Sind zusätzlich noch Schubspannungen I xz vorhanden, muß

$$\left(\frac{\tau_{xy}}{zul\ \tau_{Dxy}}\right)^{2} + \left(\frac{\tau_{xz}}{zul\ \tau_{Dxz}}\right)^{2} \leq 1 \tag{8}$$

sein,

In Gleichung (7) und (7a) ist dann einzusetzen:

$$\left(\frac{\tau}{zul\sigma^{*}_{D}}\right)^{2} = \left(\frac{\tau_{xy}}{zul\sigma^{*}_{Dxy}}\right)^{2} + \left(\frac{\tau_{xz}}{zul\sigma^{*}_{Dxz}}\right)^{2} \tag{9}$$

Räumliche Spannungszustände dürfen auf den ungünstigsten ebenen (zweischsigen) Spannungszustand zurückgeführt werden,

2.4. Formänderungsnachweis

Der Formänderungsnachweis ist zu führen, wenn durch die Verformungen Funktion oder Nutzung des Bauteils oder des gesamten Tragwerkes beeinflußt werden. In Sonderfällen sind Schwingungsunterauchungen anzustellen.

2.5. Standsicherheitsnachweis

Durch den Standsicherheitsnachweis ist die ausreichende Sicherheit gegen Abheben von den Lagern, gegen Umkippen und Gleiten sowie gegen Abtreiben fahrbarer Kenstruktionen nachzuweisen.

Er ist nach den Vorschriften für die einzelnen Stahlbau-Fachgebiete zu führen.

³⁾ Die Werte nach den Tabellen 6a bis 6c sind im allgemeinen auch dann in die Formeln einzusetzen, wenn sie über die zulässigen Spannungen für den statischen Spannungsnachweis nach Tabelle 3 hinausgehen, Für Brücken im Verkehrsbau gelten jedoch die Werte nach TGL 13 460, DV 804 und 848 der Deutschen Reichsbahn.

			2			
Tabelle 3	Zulässige Spa	nnung in ko/cm	für l	Rauteile	und	Schweißnähte

	Art der Bauteile oder	i	Beanspruchung	,		Gren	St 38 nzlastf		Grei	St 52 nzlastfa	all	Grei	St 45/ nzlastfe	
	Schweißnähte			·		H	HZ	S	Ħ	HZ	S	H	HZ	S
1	Genietete und geschraubte		Zug, Druck, Biegung	c c	'χ, ^σ y	1600	1800	2000	2400	2700	3000	3000	3400	3800
2	Bauteile sowie Grundwerks	toff	Schub		τ	920	1040	1160	1390	1560	1730	1730	1960	2200
3	in Schweißkonstruktionen		Mehrachsige Beanspruch	ung 0	χσу	1800	1900	2000	2700	2850	3000	3400	3600	3800
4	•		nach Gleichung (3) ode	r (3a)	ĭ	1040	1100	1160	1560	1650	1730	1960	2080	2200
5			Leibungsdruck bei Gele	nkbolzen	σ1	1800	2100	2400	2700	3150	3600	3400	3900	4400
6	Stumpf-, HV-, und K-Nähte	IA, IB	Zug, Druck, Biegung		σ _X	1600	1800	2000	2400	2700	3000	3000	3400	3800
7	bei Beanspruchung	II A	Zug, und Biegezug		σχ	1440	1620	1800	2160	2430	2700	2700	3060	3420
8	rechtwinklig zur Naht	II B	Zug und Biegezug		σχ	1200	1350	1500	1800	2020	2250	2250	2550	2850
9	II	A, II B	Druck und Biegedruck		σχ	1600	1800	2000	2400	2700	3000	3000	3400	3800
10	Stumpf-, HV- und K-Nähte		Schub ⁵⁾ , Nachweis nach oder (3a)	Gleichung (3) r	1120	1260	1400	1680	1890	2100	2100	2380	2660
11	Kehlnähte bei Zug		Zug, Schub a/s ≦ 0,4	und N ≦ 1000	σχ, ^τ	1350	1500	1650	1600	1800	2000	1730	1960	2200
12	und Druck rechtwinklig,		a/s > 0,4	oder N > 100	ο σχ,τ	1120	1260	1400	1390	1560	1730	1730	1960	2200
13	bei Schub parallel zur	II A	Druck		σχ	1600	1800	2000	1680	1890	2100	2100	2380	2660
14	Naht	II B	Nachweis Gleichung (3)	Zug, Schub	σχ, τ	1350	1500	1650	1680	1890	2100	2100	2380	2660
15			oder (3a)	Druck	·σχ	1600	1800	2000	2400	2700	3000	3000	3400	3800
16		43	Zug, Schub		σχ, τ	640	720	800						
17		III ⁴⁾	Druck		σχ	960	1080	1200						
18	Längsnähte ⁶⁾		Zug, Druck		σу	1600	1800	2000	2400	2700	3000	3000	3400	3800

In Zeile 11 und 12 sind: a die Kehlnahtdicke

s die kleinste Bleckdicke

N die Gesamt-Lastspielzahl bei x ≤ 0,5

Bei Teilen von Verbänden ist zusätzlich zu Tabelle 3 der Abschnitt 4.16. zu berücksichtigen

⁴⁾ Nur bei St 38 und Lastspielgruppe C zulässig
5) Beim Einzelnachweis sind die Werte des Grundwerkstoffes nach Zeile 2 maßgebend
6) Alle Schweißnähte bei Beanspruchung parallel zur Schweißnaht

- 3. ZULÄSSIGE SPANNUNGEN
 - 3.1. Zulässige Spannungen beim statischen Spannungsnachweis

Die Werte sind den Tabellen 3 bis 5 zu entnehmen. Sie gelten für Stahltemperaturen bis etwa + 60 $^{\circ}$ C.

Für Baustähle, die nicht in Tabelle 3 enthalten sind, dürsen mit Genehmigung der zuständigen Prüfstelle die zulässigen Spannungen der Fließgrenze entsprechend umgerechnet werden. Bedingung dafür ist, daß die Spannung an der Fließgrenze höchstens 75 % der Bruchspannung beträgt.

Fur Brucken im Verkehrsbau gilt anstelle Tabelle 3 die TGL 13 460 und DV 804 und 848.

Die zulässigen Spannungen in Tabelle 3, Zeile 5 und Tabelle 5 gelten nur für geringfügig bewegte Gelenke und Lager. Gelenke, die größere Bewegungen zulassen müssen eder häufig bewegt werden, sind nach den Vorschriften des Maschinenbaues zu bemessen. Die Pressungen in den Berührungslinien oder -punkten sind nach Hertz zu berechnen.

Tabelle 4 Zulässige Spannungen in kp/cm2 für Niete und Schrauben

Niete und Schrauben		bsche: nzlasi			hleibt druci	_	Zug Grenzlastfal			
	н	HZ	S	Н	HZ	S	H, HZ	S		
Niete Mu 11	1400	1600	1800	2800	3200	3600	500	* * * *)		
Niete MSt 44	2100	2400	2700	4200	4800	5400	750	** *)		
Paßschrauben 4 D	1400	1600	1800	2800	3200	3600	1000	1500		
Paßschrauben 5 D	2100	2400	2700	4200	4800	5400	1500	2000		
nicht eingepaßte Schrauben 4 D	1200	1400	1600	2400	2800	3200	1000	1500		
Ankerschrauben 4 D	####	63	· 100	a j	50	633	1000	1500		
Ankerschrauben 5 D	5 5)	200	625			de	1500	5000		
Maßgebender Niete		Loch			Loch		Loc	o h		
Querschnitt Schrauben	S	chaft	;	s	chaft	,	Kern			

Bei Paßschrauben ist der Schaftdurchmesser gleich dem Lochdurchmesser zu setzen.

Die zulässige Lochleibungsspannung für Niete MSt 44 und für Paßschrauben 5 D nach Tabelle 4 gilt nur für Bauteile aus St 52 und St 45/60. Gleitfeste Schraubverbindungen sind nach TGL 13 502 zu bemessen.

^{***)} Nur in Ausnahmefällen zulässig.

Tabelle 5 Zulässige Spannungen in kp/cm² für Gelenk- und Lagerteile mit geringfügiger Bewegung

Werkstoff	Beanspruchung				oder :	bei L Punktb nach H	- ·- +		
		Gren	zlast	fall	Gre	nzlast	fall		
		Н	HZ	S	H	HZ	s		
the state of the s	Druck	1000	1100	1200					
GGL 15	B1egezug	450	500	550	5000	5400	5800		
	Biegedruck	900	1000	1100					
MMMA Carboth his from 1938 — Parkeniners blance is more consistent of conserved a conference of conf	Druck	1300	1400	1500					
GGL 20	Biegezug	600	650	700	6500	7000	7500		
	Biegedruck	1200	1300	1400					
GS 50,1	Zug, Druck, Biegung	1800	2050	2300					
0 15 0 35	Schub	1040	1180	1330	9000	9600	10200		
St 50	Vergleichaspannung	2000	2150	8 30 0					
	Zug, Druck, Biegung	1400	1600	1800					
st 38	Schub	810	920	1040	6500	7000	7500		
	Vergleichsspannung	1600	1700	1800					
and the second s	Zug, Druck, Biegung	2100	2400	2700					
S't 52	Schub	1210	1390	1560	9000	9600	10200		
	Vergleichsspannung	2400	2550	2700					
	Zug, Druck, Biegung	2600	3000	3400					
St 45/60	Schub	1500	1730	1960	11000	11800	12600		
	Vergleichsspannung	3000	3200	3400					
	Zug, Druck, Blogung	2000	5500	2400					
0 35V, > 40 mm	Schub	1160	1270	1390	9000	9600	10200		
	Vergleichsspannung	5500	2300	2400	,				
C 45	Zug, Druck, Biegung	2100	2400	2700					
0 35 V, ≤ 40 mm	Schub	1210	1390	1560	11000	11800	12600		
S\$ 60	Vergleichsspannung	2400	2550	2700					
C 60V	Zug, Druck, Biegung	2600	3000	3400					
30 Mn 5V	Schub	1500	1730	1960	12000	12800	13600		
25 Cr Mo 4V	Vergleichsspannung	3000	3200	3400					

⁸⁾ Bei beweglichen Lagern mit mehr als zwei Walzen sind die Tabellenwerte um 1000 kp/cm 2 zu ermäßigen.

3.2. Zulässige Spannungen beim Ermüdungsfestigkeitsnachweis

Die Werte zul σ_D und zul τ_D sind Tabelle 6a bis 6c zu entnehmen. Sie hängen ab vom Werkstoff, von der konstruktiven Gestaltung und Ausführung entsprechend Tabelle 7 sowie vom Verhältnis der Grenzspannungen (χ).

Sie gelten für die z. B. bei Brücken oder Kranen üblichen Belastungen, aber nicht für Beanspruchungen mit gleichbleibenden Amplituden bei Lastwechselzahlen weit über 2 Millionen, wie sie z. B. bei Maschinenfundamenten auftreten.

Für die zulässige Abscherspannung (zul $\tau_{\,\mathrm{Da}}$) von Nieten und Paßschrauben gelten die Werte der nach Tabelle 7 zu wählenden Linie für Zugbeanspruchung (+). Die zulässige Lochleibungsspannung (zul $\sigma_{\,\mathrm{1D}}$) beträgt das 2fache dieser Werte.

Ist die Einstufung der Konstruktionsform in eine Dauer- oder Zeitfestigkeitslinie nicht eindeutig nach Tabelle 7 möglich, so muß sie durch Versuche oder durch Vergleich mit anderen Konstruktionsformen erfolgen und von der zuständigen Prüfstelle bestätigt werden.

Die dem Betrage nach größere Grenzspannung ist als Oberspannung max σ oder max τ , die dem Betrag nach kleinere als Unterspannung min σ oder min τ einzusetzen.

Das Verhältnis der Grenzspannungen ist zu ermitteln aus:

$$\chi = \frac{\min \sigma}{\max \sigma} \quad \text{oder} \quad \chi = \frac{\min \tau}{\max \tau}$$
 (10)

Es ist im Schwellbereich positiv (gleiche Vorzeichen der Grenzspannungen) und im Wechselbereich negativ (ungleiche Vorzeichen der Grenzspannungen).

Bei mehrachsigem Spannungszustand gilt zur Ermittlung von x:

$$\chi \left(\sigma_{X}\right) = \frac{\min \sigma_{X}}{\max \sigma_{X}}; \quad \chi \left(\sigma_{Y}\right) = \frac{\sigma_{Y1}}{\sigma_{Y2}} \quad \text{oder} \quad \frac{\sigma_{Y2}}{\sigma_{Y1}};$$

$$\chi \left(\sigma^{*}\right) = \frac{\tau_{1}}{\tau_{2}} \quad \text{oder} \quad \frac{\tau_{2}}{\tau_{1}}$$

oder entsprechend

$$x (\sigma_y) = \frac{\min \sigma_y}{\max \sigma_y}; \quad x (\sigma_x) = \frac{\sigma_{x3}}{\sigma_{x4}} \quad \text{oder} \quad \frac{\sigma_{x4}}{\sigma_{x3}};$$

$$x (\sigma^*) = \frac{\tau_3}{\tau_4} \quad \text{oder} \quad \frac{\tau_4}{\tau_3}$$

oder entsprechend

$$x (\sigma^*) = \frac{\min \tau}{\max \tau} ; \quad x (\sigma_x) = \frac{\sigma x_5}{\sigma_{x6}} \quad \text{oder} \quad \frac{\sigma x_6}{\sigma_{x5}} ;$$

$$x (\sigma_y) = \frac{\sigma y_5}{\sigma_{x6}} \quad \text{oder} \quad \frac{\sigma y_6}{\sigma_{x5}}$$

Fur zul $\sigma^*_{\ D}$ ist für sämtliche Konstruktionsformen - mit Ausnahme von unbeeinflußtem Grundwerkstoff und Stumpfnaht, Ausführungsklasse I A - die Dauerfestigkeitslinie II nach Tabelle 7 maß-gebend. Es ist stets die entsprechende Linie für Zugbeanspruchung (+) maß-gebend.

Tabelle 6 a Zul	lässige Spannungen	9) (zul	σ _n und zul	r _n)	in kp/cm ²	für St	38
-----------------	--------------------	---------	------------------------	------------------	-----------------------	--------	----

				-				Daue	er- und	i Zeit	festig	keitsl	inien											
		0		I		II	II	r	I	v	•	<u> </u>	v	۷٦		VII		VIII	:	IX	X		XI	
	σ	D	i	ø D	σD		σ	D	σD			σ	ď	σI)	ø D)	_	σD		~	σD		-
*	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	χ	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	$r_{ m D}$	(+)	(-)	τD	x
1,0	1400	1400	1273	1273	1182	1182	1000	1000	873	873	-1,0	764	764	6 3 6	636	473	473	318	318	735	414	414	882	-1,0
-0,9	1456	1465	1326	1333	1232	1238	1042	1047	909	914	-0,9	796	800	663	666	493	495	332	333	766	428	432	915	-0,9
-0,8	1516	1535	1384	1399	1285	1299	1088	1099	949	959	-0,8	831	839	692	699	514	520	346	350	799	443	451	950	-0,8
-0,7	1580	1612	1447	1471	1343	1366	1137	1156	992	1009	-0,7	868	883	723	736	537	546	362	368	8 3 5	460	472	988	-0,7
-0,6	1649	1697	1515	1551	1406	1441	1190	1219	1039	1064	-0,6	909	931	757	776	563	576	379	388	874	477	496	1028	-0,6
-0,5	1724	1791	1588	1640	1475	1523	1248	1289	1089	1125	-0,5	953	984	794	820	590	609	397	410	917	495	521	1070	-0,5
-0,4	1804	1895	1668	1739	1549	1615	1311	1366	1144	1193	-0,4	1001	1043	834	870	620	646	417	435	963	513	548	1116	-0,4
-0,3	1889	2011	1755	1850	1629	1718	1379	1453	1203	1269	-0,3	1053	1110	877	925	652	687	439	462	1013	533	579	1163	-0,3
-0,2	1981	2140	1849	1974	1717	1833	1453	1551	1268	1354	-0,2	1109	1185	924	987	687	733	462	494	1067	553	612	1214	-0,2
-0,1	2078	2284	1950	2115	1811	1964	1532	1662	1337	1450	-0,1	1170	1269	975	1057	724	785	487		1126	574	648	1266	-0,1
	2180	2444	2058	2274	1911	2111	1617	1786	1411	1559	0	1235	1364	1029	1137	765	844	515	568	1188	596	687	1320	0
+0,1	2285	2623	2173	2453	2018	2278	1708	1927	1490	1682	+0,1	1304	1472	1087	1227	807	911	543	613	1255	617	729	1376	+0,1
+0,2	2393	2820	2294	2655	2130	2466	1802	2086	1573	1821	+0,2	1377	1593	1147	1328	853	986	574	664	1324	639	774	1431	+0,2
+0,3	2500	3034	2416	2881	2243	1675	1899	2264	1658	1976	+0,3	1451	1729	1210	1441	900	1071	605	721	1395	662	822	1484	+0,3
+0,4	2603	3260	2536	3126	2356	2903	1996	2457	1744		+0,4	1528	1878	1276			1165	640	783	1464	687	873	1535	+0,4
+0,5	2697	3487	2648	3380	2463	3141	2092	2662		2326	+0,5	1611	2039	1352		1018		680	854	1529	722	933	1580	+0,5
+0,6	2778	3698	2746	3624	2561	3374	2192	2872	1933		+0,6	1711	2221			1119		738		1585	777	1016	1619	+0,6
+0,7	2843	3874	2825	3833	2651	3587	2304	3095	2061	'-	+0,7	1853	2456			1298		836	1086	1631	870	1154	1649	+0,7
+0,8	2888	4000	2881	.3983	2737	3774	2450	3356	2248	- '	+0,8	2076	2813			1616	-	- 1	- '		1030		1671	+0,8
+0,9	2915	4071	2913	4067	2825	3940	2650	3686	2527	3508	+0,9	2422	3356	2299	3178	2141	2950	1280	1766	1682	1290	1787	1684	÷0,9
+1,0	2923	4092	2923	4092	2923	4092	2923	4092	2923	4092	+1,0	2923	4092	2923	4092	2923	4092	1688	2363	1688	1688	2363	1688	+1,0

⁽⁺⁾ max σ_D ist Zug (-) max σ_D ist Druck

Zwischenwerte dürfen geradlinig interpoliert werden.

Für Brücken im Verkehrsbau gelten die Werte nach TGL 13 460 und DV 804 und 849.

⁹⁾ Wenn die Werte dieser Tabelle über die zulässigen Spannungen nach Tabelle 2 hinausgehen, ist der statische Spannungsnachweis maßgebend, weitere Erläuterungen siehe Hinweise.

Zulässige Spannung $^{9)}$ (zul σ_{D} und zul r_{D}) in kp/cm 2 für St 52

									Dauer-	und 2	eitfes	tigkei	tslini	en										
		0		I		II	I	II	Ţ	IV			Λ		VI	\ v	II	VII	I	IX	2	ς	XI	
	σ		σ.	D	σ	D	σ)	σ	D		σ	D	σ	D I	σ.)	σ _D (+)	σ _D (-)		^d D (+)	σ _D (-)		- Constitution
×	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	χ	(+)	(-)	(+)	(-)	(+)	(-)	ŤD		r _D	(+) TD		7 D	z
-1.0	1750	1750	1591	1591	1427	1427	1182	1182	900	900	~1,0	764	764	636	636	473	473	318	318	919	414	414	1102	~1.0
-0,9	1823	1833	1661	1667	1490	1496	1234	1239	939	943	-0,9	797	800	664	667	493	495	332	333	959	429	432	1146	-0,9
-0,8	1903	1923	1736	1752	1558	1571	1290	1301	982	991	-0,8	833	841	695	701	516	520	347	350	1002	446	453	1194	-0,8
-0,7	1989	2023	1819	1844	1632	1655	1351	1370	1029	1043	-0,7	873	885	727	738	540	548	364	369	1050	464	475	1244	-0,7
-0,6	2082	2133	1909	1947	1712	1747	1418	1447	1080	1102	-0,6	916	935	763	779	567	5 <u>7</u> 9	382	389	1102	483	499	1299	-0 <u>,6</u>
-0,5	2183	2254	2007	2062	1800	1850	1491	1532	1135	1166	-0,5	963	990	803	825	596	613	401	412	1159	503	526	1358	-0,5
-0,4	2292	2390	2114	2190	1897	1965	1571	1627	1196	1239	-0,4	1015	1051	846	876	628	651	423	438	1221	525	555	1421	-0,4
-0,3	2410	2542	2232	2334	2002	2094	1658	1734	1263	1321	-0,3	1071	1120	893	934	663	694	446	467	1289	547	588	1489	-0,3
-0,2	2539	2713	2361	2497	2118	2241	1754	1855	1336	1413	-0,2	1133	1199	944	999	702	742	472	499	1363	571	623	1561	-0,2
-0,1	2677	2905	2503	2683	2245	2407	1859	1993	1416	1518	-0,1	1201	1288	1001	1073	744	797	501	537	1445	596	663	1638	-0,1
0	2825	3123	2657	2895	2383	2597	1973	2151	1503	1638	0	1275	1390	1063	1158	789	860	531	579	1534	622	707	1718	0
+0,1	2982	3368	2823	3138	2533	2815	2097	2331	1597	1775	+0,1	1355	1506	1129	1255	839	932	565	628	1630	649	755	1802	+0,1
+0,2	3146	3645	3001	3417	2692	3065	2229	2538	1698	1933	+0,2	1441	1640	1201	1367	892	1015	600	683	1732	677	807	1888	+0,2
+0,3	3312	3953	3186	3734	2858	3350	2368	2774	1804	2113	+0,3	1531	1793	1277	1494	950	1110	639	747-	1839	706	864	1973	+0,3
+0,4	3475	4287	3372	4089	3027	3669	2509	3039	1915	2315	+0,4	1628	1965	1359	1638	1014	1218	681	820	1947	740	926	2055	+0,4
+0,5	3627	4633	3551	4470	3192	4013	2653	3327	2035	2540	+0,5	1736	2159	1457	1804	1098	1347	733	904	2050	788	1002	2130	+0,5
+0,6	3760	4965	3710	4849	3348	4363	2804	3634	2180	2797	+0,6	1878	2392	1597	2014	1234	1528	813	1016	2142	868	1113	2194	+0,6
+0,7	3867	5248	3839	5182	3496	4697	2981	3970	2390	3135	+0,7	2104	2731	1837	2354	1494	1870	957	1214	2217	1011	1315	2245	+0,7
÷0,8	3943	5451	3931	5425	3645	5008	3217	4384	2725	3667	+0,8	2486	3320	2264	2996	1978	2579	1221	1604	2270	1263	1690	2282	+0,8
+0,9	3986	5566	3984	5560	3810	5307	3548	4928	3248	4492	+0,9	3103	4281	2968	4084	2793	3831	1661	2282	2300	1678	2317	2303	+0,9
+1,0	4000	5600	4000	5600	4000	5600	4000	5600	4000	5600	+1,0	4000	5600	4000	5600	4000	5600	2309	3233	2309	2309	3233	2309	+1,0
			1		L		L	l	<u> </u>	<u> </u>	L	L	ļ		L	L	L		i	نـــــــــــــــــــــــــــــــــــــ		لبسل		<u> </u>

(+) max σ_D ist Zug (-) max σ_D ist Druck Zwischenwerte dürfen geradlinig interpoliert werden.

Für Brücken im Verkehrsbau gelten die Werte nach TGL 13 460 und DV 804 und 848.

⁹⁾ siehe Seite 11

Tabelle 6 c	Zulässige Spannung 9)	(zul	σ _D und zul τ' _D)	in kp/cm ² für St 45/60
	-	•	D D'	

								Dauer	- und	Zeitfe	stigke:	itslin	ien				*							
	c	,		I	L	ı l	II	II		IV		V		V.	I	[v	II !		III]	IX		<u>x</u>	<u> x</u>	
ж	σ (+)	D (-)	(+)	D (-)	(+)	D (-)	(+)	D (-)	(+)	(-)	z	(+)	'D (-)	(+)	7 D (-)	(+)	(-)	(+) QD	σ _D	т _D	σ _D (+) τ _D	(-)	r D	z.
-1,0 -0,9 -0,8 -0,7	1900 1982 2071 2168	1900 1991 2091 2200	1727 1805 1889 1981	1727 1811 1904 2006	1500 1567 1640 1720	1500 1573 1653 1742	1227 1282 1342 1408	1227 1287 1353 1425	909 950 994 1043	909 953 1002 1056	-1,0 -0,9 -0,8 -0,7	764 798 835 876	764 801 842 887	636 665 696 730	636 667 701 739	473 494 517 542	473 496 521 549	318 332 348 365	318 334 351 370	997 1042 1091 1144	414 430 447 466	414 433 453 476	1197 1246 1300 1357	-0,9 -0,8
-0,6 -0,5	2273 2387	2322 2457	2082 2192	2119 2246	1808 1904	1840 1950	1479 1558	1506 1596	1096 1154	1115 1182	-0,6 -0,5	920 969	937 993	767 808	781 827	570 600	580 615	383 404	390 414	1202 1266	486 508	501 529	1420 1487	+
-0,4 -0,3 -0,2 -0,1	2512 2649 2798 2960	2609 2778 2970 3187	2314 2448 2597 2760	2388 2548 2730 2938	2010 2126 2255 2397	2074 2213 2371 2552	1644 1740 1845 1961	1697 1811 1940 2088	1218 1289 1367 1453	1257 1341 1437 1547	-0,4 -0,3 -0,2 -0,1	1023 1082 1148 1220	1056 1127 1207 1299	853 902 957 1017	880 939 1006 1083	633 670 711 755	654 697 747 804	426 451 478 508	440 469 503 541	1336 1414 1499 1594	531 556 582 610	559 593 630 672	1560 1639 1724 1815	-0,2
0	3136	3434	2940	3178	2553	2759	2089	2258	1548	1672	0	1300	1405	1083	1171	805	870	542	585	1698	640	719	1913	+
+0,1 +0,2 +0,3 +0,4	3324 3524 3730 3935	3717 4038 4401 4802	3137 3351 3577 3808	3454 3774 4143 4564	2725 2910 3106 3309	2999 3277 3598 3964	2229 2381 2542 2711	2454 2682 2944 3244	1651 1764 1884 2012	1818 1986 2181 2404	+0,1 +0,2 +0,3 +0,4	1387 1482 1583 1693	1527 1669 1832 2020	1156 1235 1320 1413	1273 1390 1527 1684	859 918 982 1054	945 1033 1134 1252	578 618 660 708	636 695 764 842	1811 1934 2065 2199	670 702 736 775	771 828 891 961	2015 2121 2228 2332	+0,2
<u>+</u> 0,5	4130	5228	4035	5027	3512	4368	2884	3578	2152	2657	+0,5	1817	2235	1524	1866	1147	1392	766	935	2329	830	1045	2429	+0,
+0,6 +0,7 +0,8 +0,9 +1,0	4303 4442 4541 4598 4615	5646 6008 6271 6418 6462	4239 4407 4527 4595 4615	5500 5924 6237 6411 6462	3707 3899 4102 4336 4615	4791 5209 5617 6035 6462	3069 3290 3592 4026 4615	3942 4351 4874 5583 6462	2323 2579 2998 3664 4615	2950 3350 4006 5055 6462	+0,6 +0,7 +0,8 +0,9 +1,0	1983 2254 2726 3498 4615	2497 2892 3610 4814 6462	1685 1969 2489 3353 4615	2101 2492 3262 4604 6462	1302 1603 2183 3167 4615	1591 1977 2816 4332 6462	857 1027 1345 1880 2665	1059 1284 1749 2576 3731	2448 2544 2613 2653 2665	923 1093 1397 1902 2665	1172 1407 1858 2622 3731	2513 2581 2629 2656 2665	+0,7 +0,8 +0,9

⁽⁺⁾ mex σ_D ist Zug (-) mex σ_D ist Druck Zwischenwerte dürfen geradlinig interpoliert werden.

Für Brücken im Verkehrsbau gelten die Werte nach TGL 13 460 und DV 804 und 848

⁹⁾ siehe Seite 11

	Tabelle 7 Einstufung der Konstruktionsformen in die Ermüdungsfestigkeitslinien							
Lastspie A	elgruippe <i>B</i>	art art	Schemaskizze	Beschreibung				
Ï	0	ای		Grundwerkstoff ohne Schweißnähte und Kerben für Normalspannungen und zul g*				
I	I	В		Stumpfnaht Ausführungsklasse I A sowie der beeinflußte Grundwerkstoff, Beanspruchung rechtswinklig oder parallel zur Schweißnaht und für zulo* _D				
Ш	I	б		1 Stumpf-, K-, HV- oder Kehlnähte - außer Ausführungsklasse I A - sowie der durch die Nähte beeinflußte Grundwerkstoff; Beanspruchung parallel zur Schweißnaht 2 Grundwerkstoff am Ende eines aus dem Vollen hergestellten, ausgerundeten Knotenbleches siehe Bild 23, 24 3 Sämtliche Konstruktionsformen mit Ausnahme von umbeeinflußtem Grundwerkstoff und Stumpf-naht Ausführungsklasse IA für zulg*n				
N	Ш	d		1 Stumpfneht Ausführungsklasse I B; Beanspruchung rechtwinklig zur Schweißneht 2 Grundwerkstoff am Ende einer Gurtplatte oder eines Stabanschlusses mit Stirn- und Flanken- Kehlnähten, bearbeitet, siehe Bild 20 3 Grundwerkstoff mit Quernaht(Kehlnaht, HV- oder K-Naht, Übergänge rechtwinklig zur Naht- achse bearbeitet) 4 Grundwerkstoff am Längsmehtende, Naht herungeschweißt, bearbeitet 5 Lochstab mit Fieten oder Paßschrauben; Niete oder Paßschrauben zweischnittig oder am Stoß von Biegeträgern 6 Druckspannung infolge Einzellast, im durch Kehlnähte beeinflußten Stegblech				
V	IV	Q	5	1 HV- oder K-Naht Ausführungsklasse I B und Grundwerkstoff, Beanspruchung rechtwinklig zur Schweißnaht 2 Grundwerkstoff am Ende einer Gurtplatte oder eines Stabanschlusses mit Stirn- und Flanken-Kehlnähten, umbearbeitet, siehe Bild 19 3 Grundwerkstoff mit Quernaht (Kehlnaht, HV- oder K-Naht, umbearbeitet) 4 Grundwerkstoff am Längsmahtende, Baht herungeschweißt, umbearbeitet oder am Ende unterbrochener Längskehlnähte, z.B. bei Längsmussteifungen 5 Einschnittige Biete oder Paßschrauben außer am Stoß von Biegeträgern 6 Grundwerkstoff am Ende eines mit Stumpf- oder Kehlnähten angeschweißten ausgerundeten Knotenbleches siehe Bild 25				
Z	V	ď		1 Stumpfnaht Ausführungsklasse II A Beenspruchung rechtwinklig zur Schweißnaht 2 Stumpfnaht mit unterlegtem Blech J Beenspruchung rechtwinklig zur Schweißnaht 3 HV- oder K-Näht Ausführungsklasse II A und Grundwerkstoff, Beenspruchung rechtwinklig zur Schweißnaht 4 Grundwerkstoff mit bearbeiteter Kehlnaht, Ausführungsklasse II A, Beanspruchung recht- winklig zur Schweißnaht 5 Grundwerkstoff an eingesetzten Knotenblechen siehe Bild 26,27				
VII .	Z I	d		1 Stumpfnaht Ausführungsklasse II B Beanspruchung rechtwinklig zur Schweißnaht 2 Welzprofilstoß nach Abschmitt 6.5.4.) 3 HV- oder K-Naht Ausführungsklasse II B und Grundwerkstoff, Beanspruchung rechtwinklig zur Schweißnaht 4 Kehlnaht bei Anwendung der Gleichung (7), Beanspruchung rechtwinklig zur Schweißnaht und Grundwerkstoff mit umbearbeiteter Kehlnaht, Ausführungsklasse II B, Beanspruchung rechtwinklig zur Schweißnaht 5 Grundwerkstoff an Ende von Flanken-Kehlnähten 6 Grundwerkstoff an stumpf angeschweißten Blechen 7 Grundwerkstoff an überlappt angeschweißten Blechen 8 Unterbrochene Stumpfnähte				
VIII	X	g T	10 16 2	1 Schubspamning in Schweißnähten (1), bei denen durch ungleiche Dehnung der verbundenen Beuteile Spamningsspitzen auftreten, z.B. 1a) Manken-Kehlneht am Stabanschluß 1b) K-Naht am Stabanschluß 2 Normalspamning in Kehlnähten (0), Beanspruchung rechtwinklig zur Schweißnaht, beim Nachweis nach Gleichung (6)				
II.	X	T		Schubspennung im Grundwerkstoff und in Schweißnähten				

4. GRUNDSÄTZLICHE REGELN FÜR ALLE BAUTEILE

4.1. Technische Unterlagen

Die Zeichnungen und Stücklisten für die Fertigung müssen Angaben über die Ausführungsgruppe und die Werkstoffe enthalten, Bei St 38 ist die Stahlgütegruppe nach TGL 7960 anzugeben.

4.2. Mindestabmessungen

Sofern nicht in anderen DDR- oder Fachbereichstandards abweichende Festlegungen getroffen sind, dürfen bei tragenden Bauteilen die folgenden Abmessungen nicht unterschritten werden.

Tabelle 8 Mindestabmessungen

	allgemein	bei Einwirkung stark aggressiver Medien		
Bleche	4	6		
Profilstahl, Stabstahl				
Dicke: abatehende Teile	4	6		
Stege	4	4,9		
Schenkelbreite	30	50		
Profiltelle, die Schrauben- oder Nietlöcher enthalten				
Breits:	50	58		
Schrauben, Niete (Rohniet)	ø 12	Heftniete Ø 12		
ware ware and the forested of	Kraftni ø 16			
Schweißnähte	a = 3			

Die angegebenen Mindestabmessungen beziehen sich auf Nennmaße.

4.3. Konstruktiver Korrosionsschutz

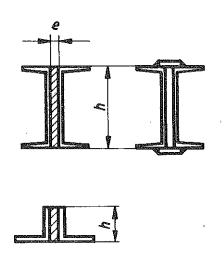
Die Bauteile sollen an allen Stellen leicht zugänglich und einfach zu warten sein. Wasser muß an jeder Stelle, unter Vermeidung von Wassersäcken, gut ablaufen können.

Bauteile mit geschlossenem Querschnitt, deren Inneres nicht zugänglich ist, sind im Regelfall, in der chemischen Industrie aber stets, luftdicht zu schließen, andernfalls gut zu belüften, zu entwässern und mit einem Innenschutz zu versehen. Bauteile, die verzinkt werden sollen, sind der Verzinkungstechnologie entsprechend zu gestalten.

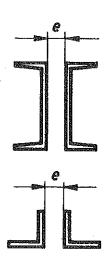
Der Zwischenraum bei zusammengesetzten Querschnitten ist zu schließen, wenn der Abstand benachbarter Flächen

bei Einwirkung stark aggressiver Medien sowie bei nicht verzinkten Bauteilen e $<\frac{h}{3}$

bei verzinkten Bauteilen ohne Einwirkung stark aggressiver Medien sewie bei nicht verzinkten Bauteilen von Tagebaugeräten


$$e < \frac{h}{10}$$
 oder $e < 10$ mm

bei Brücken im Verkehrsbau


$$e < \frac{h}{6}$$
 oder $e < 15$ mm

1st, siehe Bild 1 und 2.

Geringere Abstände sind mit Ausnahme der chemischen Industrie im Einvernehmen mit dem Besteller ausnahmsweise zulässig, wenn ein zweifacher Bleimennige-Grundanstrich und ein eisenglimmerhaltiger Deckanstrich aufgebracht wird sowie bei Tragwerken. bei denen auf Grund der Nutzungsdauer keine Erneuerung des Anstriches und keine Gefährdung durch Korrosion zu erwarten ist.

B11d 2

Bei besonderer Korrosionsgefahr, z. B. in der chemischen Industrie, sind Stützen mindestens 200 mm über Fußbodenoberkante zu gründen und die Stützenfüße frei zugänglich zu halten. Sonst ist das Eindringen von Feuchtige keit an den Berührungsstellen von Stahl und Beton durch geeignete Maßnahmen zu verhindern.

4.4. Querschnittsübergänge

Bei Bauteilen der Ausführungsgruppe A sind schroffe Querschnittsübergänge, einspringende Ecken und Richtungsänderungen durchlaufender Teile zu vermeiden. Sind sie nicht zu umgehen, müssen sie mit größtmöglichem Halbmesser ausgerundet werden.

Die Erhaltung der Querschnittsform ist zu gewährleisten,

Wenn sich Kröpfungen nicht vermeiden lassen, sind sie als schlanke Keil-kröpfungen auszuführen,

4.5. Zusammenwirken verschiedener Verbindungsarten

Verschiedene Verbindungsmittel, z.B. Niete, Schrauben, Schweißnahte, Kleber, dürfen an einem Bauteil verwendet werden. Das Zusammenwirken verschiedener Verbindungsarten im selben Anschluß zur Übertragung einer Schnittskraft ist nur gestattet bei:

Nieten und Paßschrauben Gleitfesten Schraubverbindungen und Schweißnahten nach TGL 13 502 Gleitfesten Schraubverbindungen und Nieten nach TGL 13 502

Nietung und Schweißung dürfen nur in biegesteifen Montagestößen zusammenwirken, wenn ein Gurt einwandfrei geschweißt ist und alle anderen Teile genietet oder geschraubt sind. Die Schweißung ist zuerst auszuführen. Die ungleichen Steifigkeiten des Schweiß- und Nietanschlusses sind zu berücksichtigen.

4.6. Anschweißungen

Sind aus besonderen Gründen, z. B. des Transports oder der Montage, Anschweißungen erforderlich, so sind sie auf den Zeichnungen anzugeben, auch wenn sie später wieder beseitigt werden. Bei Lastspielgruppe A und B ist der Einfluß auf die Ermüdungsfestigkeit zu berücksichtigen.

Anschweißungen an nicht schweißbaren Stählen der Gütegruppe i nach TGL 7960 sind nicht zulässig.

4.7. Anschlüsse und Stöße

Die einzelnen Teile eines zusammengesetzten Querschnittes sind, sofern es konstruktiv möglich ist, je für sich und ohne Zwischenlagen oder Futter anzuschließen oder zu stoßen. Die Deckungsteile und ihre Verbindungsmittel sind nach der anteiligen Kraft zu bemessen.

Wenn bei Biegeträgern einzelne Teile eines Querschnittes nicht voll gedeckt werden, ist die Veränderung des Trägheitsmomentes und die dadurch bedingte Spannungsumlagerung zu beachten.

Die Schwerachsen der Nietgruppen oder Schweißnähte sollen sich so weit wie möglich mit den Schwerachsen der zu verbindenden Teile decken. In zusammengesetzten Querschnitten gilt das auch für die einzelnen Querschnittsteile.

Alle Stöße und Anschlüsse sind gedrängt auszubilden.

Verlaschungen müssen zweischnittig und symmetrisch angeordnet werden,

Stoße von Bauteilen, für die der Stabilitätsnachweis maßgebend ist, sind in der Regel so auszubilden, daß auch im Stoßquerschnitt die volle Querschnittsfläche und das volle Trägheitsmoment vorhanden sind; andernfalls ist die Auswirkung der Schwächung zu berücksichtigen, Gelenkige Anschlüsse von Druckstäben sind nach den Druckkräften ehne Knickzahl (ω) zu bemessen.

Der für den statischen Spannungsnachweis und den Ermüdungsfestigkeitsnachweis erforderliche Stabquerschnitt muß im theoretischen Knetenpunkt voll wirksam sein.

4.8. Knotenbleche

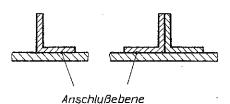
Die Beanspruchung der Knotenbleche ist zu beachten. Sie dürfen zur Stoßdeckung herangezogen werden, wenn nachgewiesen wird, daß ihre Tragfähigkeit auch dafür noch ausreicht.

4.9. Querbelastete Stäbe

Biegespannungen infolge Querbelastung von Stäben sind zu berücksichtigen; ausgenommen ist die Querbelastung aus Wind und aus Beschleunigungslasten. Die Eigenlast des Stabes ist nur bei Stäben von mehr als 6 m projizierter Länge zu berücksichtigen.

4.10. Außermittigkeiten und gekrümmte Stäbe

Biegememente, die in Stäben entstehen, wenn Stabachse und Wirkungslinie der Längskraft sich nicht decken, z. B. bei Außermittigkeiten und gekrümmten Stäben, sind mit zu erfassen.


Die zulässigen Spannungen nach Tabelle 3 dürfen dabei bei Zugbeanspruchung um 10 % erhöht werden.

Außermittigkeiten dürfen unberücksichtigt bleiben wenn:

Schwerachsen von Gurten gemittelt werden,

die Anschlußebene eines Verbandes nicht in der Höhe der gemittelten Gurtschwerachse liegt oder

bei Gliedern von Verbänden, die unmittelbar an das Knotenblech angeschlossen sind, siehe Bild 3, und außer durch ihre
Eigenlast nur durch Zusatzlasten und/oder geringfügige Hauptlasten beansprucht werden, die Schwerachse nicht mehr als
35 mm gegen die Anschlußebene versetzt ist. Bei größeren Außermittigkeiten (a) direkt an das Knotenblech angeschlossener Verbandsglieder ist als Hebelarm für das Versetzungsmoment die
Differenz a - 35 mm anzusetzen, Sind Zwischenlagen vorhanden,
ist deren Dicke in jedem Falle zu berücksichtigen, Der Stabilitätsnachweis für Stäbe aus einzelnen Winkeln ist nach
TGL 13 503 Bl. 1 und 2 zu führen.

B114 3

4.11. Steifigkeit der Stabanschlüsse

Einfache Dreieckfachwerke dürfen unter der Annahme reibungsfreier Gelenke in den Knoten berechnet werden. Die Nebenspannungen, die durch die Stei-figkeit der Knoten und Stabanschlüsse entstehen, dürfen im allgemeinen unberücksichtigt bleiben.

Wenn sie erfaßt werden, dürfen die zulässigen Spannungen um einen zu begründenden Betrag erhöht werden.

Rautenträger und Fachwerke mit mehrfachen Strebenzügen müssen unter Berücksichtigung der Längskräfte und der Gurtbiegemomente berechnet werden.

Verbände, deren Ausfachung aus einfachen Rauten oder gekreuzten Streben besteht und die nur durch Zusatzlasten beansprucht werden, dürfen näherungs-weise unter der Annahme gelenkiger Knoten berechnet werden.

4.12. Vollwandträger

Außer der Beulsicherheit der Stegbleche ist auch die der Gurte nach TGL 13 503 Bl.1 und 2 nachzuweisen, wenn der größte Abstand eines Punktes vom gestützten Rand größer als die 15fache Gurtdicke ist.

Bei breiten Gurten ist die mittragende Breite zu bestimmen.

Steifen durfen auch einseitig liegen und müssen nicht aus der gleichen Stahlsorte bestehen wie das auszusteifende Blech, Sie sollen nicht ge-kröpft werden.

Werden Steifen nicht eingepaßt oder nicht an den Gurt geschweißt, ist ein ausreichender Zwischenraum für den Korrosionsschutz vorzusehen.

Werden längslaufende Steifen zur Aufnahme von Längskräften herangezogen, müssen sie entsprechend gestoßen werden.

An Eintragungsstellen großer Einzellasten und an Auflagern sind Steifen anzuordnen, die zusammen mit dem entsprechenden Stegblechanteil die Last aufnehmen können.

Biegeträger, bei denen die Querkraft nicht im Schubmittelpunkt angreift, müssen gegen Verdrehen gesichert oder entsprechend berechnet werden.

Geschweißte Biegeträger der Lastspielgruppe C dürfen mit Zuggurt aus einem Stahl höherer Festigkeit als der des Steges ausgeführt werden, webei der Zuggurt mit der für den höherfesten Stahl zulässigen Spannung ausgenutzt werden darf, aber nicht höher als bis zur Fließgrenze des Steges. Für Konstruktionen dieser Art gelten folgende Einschränkungen:

Der gegenüber den zulässigen Spannungen nach Tabelle 3 überbeanspruchte Teil des Stegbleches darf durch keinerlei Querlasten beansprucht werden. Für die Aufnahme der Querkraft darf dieser Teil des Stegbleches nicht herangezogen werden. In diesem Bereich muß der Träger parallelgurtig sein, und der Zuggurt darf nicht abgestuft werden.

Der Beulsicherheitsnachweis 1st für das volle Stegblechfeld zu führen. Als Schubspannung ist dabei der Wert einzusetzen, der für den Teil des Steg-bleches, in dem die zulässigen Spannungen nicht überschritten sinf, berechnet worden 1st.

4.13. Fachwerkstäbe

Die Schwerlinien der Stäbe müssen sich mit den Systemlinien decken. Querschnittsverstärkungen sind dementsprechend anzuordnen. Wenn sich Versetzungen der Schwerlinien nicht vermeiden lassen, muß sich die gemittelte Schwerlinie mit der Systemlinie decken. Sonst sind die Biegememente aus der Außermittigkeit zu berücksichtigen.

Die einzelnen Teile mehrteiliger Zugstäbe müssen mindestens an den Enden miteinander verbunden werden.

4.14. Belagbleche

Sollen Belagbleche die Aufgabe von Verbänden übernehmen, müssen sie entsprechend mit den Trägergurten verbunden und wenn nötig ausgesteilt sein,

4.15. Gekreuzte Streben

Bei gekreuzten gleichlangen und miteinander verbundenen steifen Streben von Verbänden ist jede Strebe für die halbe Querkraft auf Zug und Druck zu berechnen, Für die Berechnung auf Druck gilt TGL 13 503 Bl. 2.

Zur Verbindung im Kreuzungspunkt dürfen in besonderen Fällen Schrauben mit gesicherten Muttern eder selbstsichernde Schrauben verwendet werden.

Nicht knicksteife Streben sind nur in Lastspielgruppe C zulässig. Sie sind se einzubauen, daß die Zugstrebe ehne wesentliche Verschiebung der Anschlußknoten zum Tragen kommt.

4.16. Zusammenwirken von Verbänden und Hauptträgern

Werden innerlich statisch unbestimmte Verbände so angeordnet, daß sie Kräfte aus der Verformung der Hauptträger übernehmen, so sind diese Kräfte bei den Verbandstäben und ihren Anschlüssen zu berücksichtigen. Für die Gesamtspannungen gelten dann die zulässigen Spannungen des Grenzlastfalles Hz. Andernfalls dürfen die zulässigen Spannungen in derartigen Verbandstäben nur bis zu 75 % ausgenutzt werden.

Für Spannungen aus der Verformung der Hauptträger oder aus räumlicher Tragwirkung ist gegebenenfalls auch der Dauer- und Zeitfestigkeitsnachweis zu führen.

4.17. Kaltverformung

Bei Kaltverformung ist TGL 12 910 zu beachten,

5. ZUSÄTZLICHE REGELN FÜR GENIETETE UND GESCHRAUBTE BAUTEILE

5.1. Niete und Schrauben

Grundsätzlich sind Halbrundniete nach TGL 0-124 und Schrauben nach TGL 0-7990 und Paßschrauben nach TGL 12 518 zu verwenden.

Senkniete und Senkschrauben sind nur in besonderen Fällen zulässig,

Gleitfeste Schraubverbindungen nach TGL 13 502 sind für alle Tragwerke zulässig.

Fur tragende Anschlusse in Ausführungsgruppe A sind nicht eingepaßte Schrauben nur bei reiner Zugbeanspruchung der Schrauben zulässig.

Bei Bauteilen mit nicht eingepaßten Schrauben ist der größere Schlupf zu berücksichtigen, wenn dadurch wesentlich größere Beanspruchung oder Verformung zu erwarten ist.

Unter der Mutter ist bei tragenden Anschlüssen eine Unterlegscheibe anzuerdnen. An schrägen Anlageflächen sind keilfürmige Scheiben zu verwenden. Bei Bauteilen, die Erschütterungen ausgesetzt sind, sind die Muttern zu sichern, Bei Federringen unter der Mutter ist die wirkliche Leibungsfläche des Schaftes ohne Gewindeauslauf anzusetzen, die sich im ungünstigsten Fall auf Grund der Toleranz ergibt. Ebenso ist zu verfahren, wenn anstelle der Unterlegscheibe nur eine Keilscheibe angeordnet wird.

5.2. Querschnittswerte und Lochabzug

Tabelle 9 Maßgebende Querschnittswerte beim statischen Spannungsnachweis und Dauerfestigkeitenachweis

Schnittkraft	Spannungsart	Maßgebende Querschnittswerte			
Längskraft	Zug	F - AF			
nange was u	Druck	r			
Querkraft	Schub	Schubaufnehmende Flüchen ohne Lechabzug			
Biegemoment	Zug	$W_{\mathbf{Z}} = \frac{\mathbf{J} - \mathbf{A} \mathbf{J}}{\mathbf{e}_{\mathbf{Z}}}$			
n v a Bemaman è	Druck	$W_{d} = \frac{J}{e_{d}}$			

Als Lochabzug I F von der Querschnittsfläche (F) eines auf Zug beanspruchten Stabes sind die Flächen aller in die ungünstigsten Rißlinien der einzelnen Querschnittsteile fallenden Löcher anzusetzen.

Bei gleitfesten Schraubverbindungen gelten für den Lochabzug die Angaben in TGL 13 502.

Als Lochabzug $\it A$ J vom Trägheitsmoment (J) eines auf Biegung beanspruchten Stabes sind nur die Löcher des gezogenen Gurtes anzusetzen, die in die ungünstigste Rißlinie fallen. Die Löcher im Trägerhals sind nur dann abzuziehen, wenn keine Kopfniete vorhanden sind. Der Lochabzug $\it A$ J und die Randabstände e $\it A$ und e $\it A$ sind auf die Schwerachse des ungelochten Querschnittes zu beziehen.

Für die Berechnung von Verformungen sind die Querschnittswerte ohne Lochabzug einzusetzen.

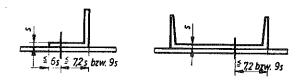
5.3. Niet- und Schraubenabstände

Die zulässigen Niet- und Schraubenabstände sind Tabelle 10 zu entnehmen.

Tabelle 10 Niet- und Schraubenabstände

		Hochbau, Kranbau	Brücken im Verkehrsbau; Einwirkung stark aggressiver Medien			
Kleinster	in Kraftrichtung	2	đ.			
Rand- abstand	rechtwinklig zur Kraftrichtung	1,5 d				

		Hochbau, Kranbau	Brücken im Verkehrsbau; Einwirkung stark aggressiver Medien		
Größter	allgemein ¹⁰⁾	3 d oder 6 s			
Rand abstand	bei Stab- und Form- stählen am versteiften Rand, siehe Bild 4	3 d oder 9 s	3 d oder 7,2 s		
Kleinster Loch- abstand	allgemein		3 d		
<i>;</i>	Kraftniete bzwschrauben	8 d oder 15 s	6 d oder 12 s		
•	Heftniete bzwachrau- ben im Druckbereich	8 d oder 15 s	7 d oder 14 s		
Größter Lochab- stand eq	Niete bzw. Schrauben in Stegaussteifungen und langen Anschlüs- sen mit Querkraft	8,5 d oder 17 s			
	Heftniete bzw _e -schrau- ben im Zugbereich	12 d oder 25 s	10 d oder 20 s		
	Randniete von Belag- blechen	18 d oder 50 s	cati		
Größter Loch-	wenn alle außenliegen- den Teile Formstähle sind, siehe Bild 5	1,5 e ₁			
abstand	in den inneren Reihen mehrreihiger Nietung, siehe Bild 6	2 91			


Die größten Lochabstände dürfen nur angewendet werden, wenn die Berechnung keine engere Teilung erfordert. Bei den von d oder a abhängigen Werten ist der kleinere Wert maßgebend.

Hals- und Kopfniete in Blechträgern außerhalb der Stoßteile gelten als Heftniete, ebense gering beanspruchte Kraftniete.

Anreißmaße der Ferm- und Stabstähle sewie die zulässigen kleinsten versetzungen der Niete in den beiden Schenkeln von Winkelstählen sind anzuordnen nach TGL 0-997, TGL 0-998, TGL 0-999 und TGL 12 371 Bl. 1 bis 3.

Bei rein konstruktiven Verbindungen, die auch nicht einzelne Teile zu gemeinsamer Tragwirkung verbinden, sind Abweichungen zulässig, sofern keine Bedenken wegen Korrosion bestehen,

¹⁰⁾ Ausnahme siehe Abschnitt 5.6.

B114 4

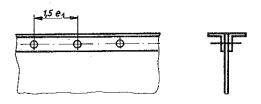
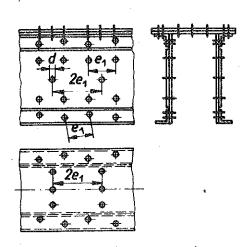



Bild 5

B114 6

5.4. Klemmlängen

Die größten Klemmlängen für Niete sind Tabelle 11 zu entnehmen. Bei größeren Klemmlängen sind Paßschrauben nach TGL 12 518 zu verwenden.

Tabelle 11 Größte Klemmlänge der Niete

Nietloch- durchmesser d	13	17	21	23	25	28	31
Klemmlänge für Halbrundniete							
0,2 · d ²	34	58	88	106	125	157	192
nach TGL 0-124			<u> </u>				

5.5. Anschlüsse und Stöße

Verbindungen sind so zu kenstruieren, daß sich sämtliche Niete oder Schrauben ohne Zwängen einziehen und einwandfrei schlagen oder anziehen lassen,

Jeder Querschnitt ist in Kraftrichtung mit höchstens 6 Kraftnieten oder -schrauben in jeder Reihe anzuschließen. Wenn in Ausnahmefällen mehr als 6 Niete oder Schrauben hintereinander erforderlich sind, ist die ungleiche mäßige Krafteverteilung zu berücksichtigen. Bei Stabanschlüssen sind mindestens 2 Niete oder Schrauben hintereinander anzuerdnen. Ausnahmen sind zulässig bei Geländern sowie bei gering beanspruchten Bauteilen, wenn die zu übertragende Kraft einer Schraube oder eines Nietes höchstens 50 % der zulässigen Kraft beträgt. Bei Stabanschlüssen, bei denen die Verbindung nur durch Normalkräfte im Stab so beansprucht wird, daß keine Zusatzmemente auftreten, ist der Anschluß mit einer Schraube zulässig.

Rechteckige Nietbilder sind rautenförmigen vorzuziehen.

Futterstücke zwischen tragenden Teilen mit mehr als 6 mm Dicke oder 75 % der geringsten Dicke eines der zu verbindenden Teile müssen mit mindestens 2 Nieten je Reihe vorgebunden werden, jedoch genügt in Reihen mit bis zu 4 Nieten Voranschluß mit einem Niet. Wenn Zwischenlagen der angegebenen Dicken aus besonderen Gründen nicht vorgebunden werden, ist die zu übertragende Kraft der Niete des betreffenden Anschlusses für jede einzelne Zwischenlage um 30 % zu erhöhen. Dasselbe gilt auch für indirekte Stöße von Gurtlamellen, siehe Bild 7.

B11d 7

Sind Beiwinkel angeordnet, ist einer ihrer beiden Schenkel mit dem 1,5fachen der anteiligen Kraft anzuschließen außer bei gleitfesten Schraubverbindungen.

5.6. Gurtplatten und Gurtwinkel

Bei der Berechnung der Nietteilung sind die vollen Querschnittswerte des Trägers einzusetzen.

Gurtplatten sind mit mindestens zwei Nietreihen über den rechnerischen Endpunkt hinauszuführen; eine Reihe darf mit diesem Endpunkt zusammenfallen.

Die Gurtplatten sollen im Regelfall mindestens 5 mm über die Schenkel der Gurtwinkel überstehen.

Sind die Gurtwinkel durch Steglaschen unterbrochen, sind sie zur sicheren Übertragung der Schubkräfte durch Stoßwinkel, nicht durch Einzellaschen, miteinander zu verbinden.

Der Abstand der Niete von der Kante der obersten oder untersten Gurtplatte darf - abweichend von Tabelle 10 - höchstens 4 d oder 8 s betragen.

5.7. Stegblechstoß

Werden die Decklaschen beim Stegblechstoß nicht über die ganze Höhe des Stegbleches geführt, so müssen bei Ausführungsgruppe A auf den anliegenden Schenkeln der Winkel besondere Laschen zur Deckung des unter ihnen liegenden Stegblechteiles angebracht werden, die über die Stegblechlaschen greifen und mit ihnen durch mindestens eine Nietreihe verbunden werden. Sonst ist die Änderung der Spannungsverteilung zu berücksichtigen.

- 6. ZUSÄTZLICHE REGEIN FÜR GESCHWEISSTE BAUTEILE
- 6.1. Allgemeine Angaben
- 6.1.1. Technische Unterlagen

Die Zeichnungen für die Fertigung müssen zusätzlich zu Abschnitt 4.1. Angaben enthalten über Form, Dicke, Länge, Ausführungsklasse der Schweißnähte und gegebenenfalls Schweißposition, Schweißverfahren, Zusatzwerkstoffe, Wärmebehandlung und Durchstrahlung.

Wenn erforderlich, sind Schweißplan und Durchstrahlungsplan gesondert aufzustellen.

6.1.2. Zusammenwirken verschiedener Nahtarten

6.1.2.1. Stumpf- und Kehlnähte

Das Zusammenwirken von Querstumpfnähten und Flanken-Kehlnähten in einem Anschluß darf nur für Schweißverbindungen der Lastspielgruppe C in Rechnung gestellt werden. Die Kehlnähte sind dabei mit abgeminderter Fläche einzusetzen, Maßgebend sind die zulässigen 'Spannungen für Stumpfnähte Ausführungsklasse II A eder II B.

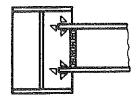
$$F_{ges} = F_s + 0.6 F_k$$
, gultig für $F_k/F_s \le 1.5$ (11)

Hierbei bedeuten:

Fa Fläche der Stumpfnähte

Fk Fläche der Kehlnähte

Entsprechend darf bei biegesteilen Konsolanschlüssen von I-Querschnitten, der en Gurte geschlitzt mit Flanken-Kehlnähten und der en Stege mit Stumpfnähten angeschlossen sind, verfahren werden. Die Kehlnähte sind dabei mit abgemindertem Trägheitemoment einzusetzen. Maßgebend sind die zulässigen Spannungen für Stumpfnähte.


$$J_{ges} = J_s + 0,6 J_k$$
, gultig für $J_k/J_s \le 5$ (12)

Hierbei bedeuten:

Js Trägheitsmoment der Stumpfnähte

Jk Trägheitsmement der Kehlnähte

Wenn der Nachweis der Kehlnähte allein mit \mathbf{F}_k oder \mathbf{J}_k und zul τ günstiger wird, ist er maßgebend,

B11d 8

6,1,2,2 Stirn- und Flanken-Kehlnähte

Das Zusammenwirken von Stirn- und Flanken-Kehlnähten in einem Anschluß eines Zug- oder Druckstabes oder einer Gurtlamelle darf mit enteprechend abgeminderter Fläche der Flanken-Kehlnähte berücksichtigt werden, wenn das angeschlossene Bauteil nach Lastspielgruppe C berechnet wird.

$$F_{g \otimes g} = F_g + 0.6 F_f$$
 (13)

oder

Fges = Ff

Der größere Wert ist maßgebend.

Hierbei bedeuten:

Fg Fläche der Stirn-Kehlnaht (ag . b)

Ff Flache der beiden Flanken-Kehlnähte zusammen (2 af . 1)

Das Verhältnis der Länge der Flanken-Kehlnaht (1) zur Länge der Stirn-Kehlnaht (b) soll sein

$$0.5 \le 1/b \le 1.5$$

Für die Stirn-Kehlnaht ist die zulässige Spannung für Kehlnaht auf Zug anzunehmen.

Die Länge der Stirn-Kehlnaht (b) ist nicht größer anzunehmen als die Breite des angeschlossenen Stabes.

6.1.3. Schweißnahtdicke

Die Schweißnahtdicke (a) 1st bei Stumpf-, HV- und K-Nähten gleich der geringsten Dicke unmittelbar neben der Naht, bei Kehlnähten gleich der Höhe des eingeschriebenen gleichschenkligen Dreieckes.

Die Dicke der Kehlnähte ab a = 3 mm soll a = 0,7 s nicht übersteigen und darf nur in Ausnahmefällen bis zu a = s betragen, webei s die Dicke des dünnsten Teiles am Anschluß ist,

6.1.4. Schweißnahtlänge

Die rechnerische Schweißnahtlänge (1) ist gleich der ausgeführten Nahtlänge (1₁), vermindert um die zwei Endkraterlängen, die je zu a anzunehmen sind.

$$1 = 1_1 = 2a \tag{14}$$

Beim Ausziehen der Schweißnaht auf Endkraterbleche oder Herumschweißen entfällt der Abzug der Endkrater, Bei Ausführungsklasse II A und II B ist eine entsprechende Angabe auf der Zeichnung erforderlich,

Die rechnerische Länge (1) von Flanken-Kehlnähten bei Stabanschlüssen ist anzunehmen bei

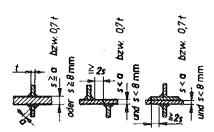
Lastspielgruppe A und B: $15 \text{ a} \leq 1 \leq 60 \text{ a}$ Lastspielgruppe C : $10 \text{ a} \leq 1 \leq 100 \text{ a}$

B11d 9

Beim Niet- oder Schraubanschluß zusammengesetzter Querschnitte gilt als rechnerische Nahtlänge (1) der Nähte, die zur Verbindung der nicht unmittelbar angeschlossenen Querschnittstelle dienen, der Abstand der ersten Niet- oder Schraubenreihe vom Nahtende, siehe Bild 9.

6.1.5. Flachen und Flachenmomente

Die rechnerische Schweißnahtfläche ist das Produkt aus der rechnerischen Nahtlänge (1) und der Nahtdicke (2), die bei Kehlnähten in die Anschlußsebene umzuklappen ist.


$$\mathbf{F}_{\mathbf{sohw}} = \sum \mathbf{a} \cdot \mathbf{1} \tag{15}$$

Truckeitsmoment und Widerstandsmoment sind entaprechend zu berechnen.

Bei auf Schub beanspruchten Anschlüssen eind nur die Schweißnähte zu berücksichtigen, die für die Kraftübertragung bevorzugt in Frage kommen. Das sind z. B. bei trägerartigen Querschnitten die Nähte parallel zur Querkraftrichtung, in die die Schubkraft einwandfrei eingeleitet wird.

6.1.6. Gegenüberliegende Nähte

Schweißnähte dürfen an einem Querschnittsteil nur dann gegenüberliegen, wenn dieser mindestens 8 mm dick ist oder bei Kehlnähten mindestens die Dicke einer Naht oder bei Stumpfnähten mindestens die 0,7fache Dicke der Naht hat. Sonst müssen die Einbrandzonen um mindestens das Doppelte der Blechdicke versetzt sein, siehe Bild 10.

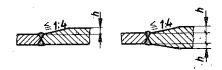
B11d 10

6.1.7. Ausführungsklassen

Ausführungsklassen von Schweißverbindungen nach TGL 11 776 Bl. 1.

In Ausführungsklasse III sind Stumpfnähte für tragende Anschlüsse und Stöße nicht zulässig, Kehlnähte nur bei St 38 und Lastspielgruppe C.

6.2. Stumpfnähte


6,2,1. Form und Lage

Für Stumpfnähte sind Nahtformen nach TGL 14 905 anzuwenden. Sie sind der Eigenart der Schweißverfahren und der Zusatzwerkstoffe anzupassen, Andere Fugenformen dürfen ausnahmsweise angewendet werden, wenn sich damit eine gleichwertige Naht erzielen läßt.

Die Stöße sollen zweckmäßigerweise rechtwinklig zur Kraftrichtung liegen.

6.2.2. Dicken- und Breitenwechsel

Wechselt in einem Blechstoß die Dicke oder Breite, ist ein allmählicher Übergang herzustellen.

Der Dickenübergang muß bei Bauteilen der Ausführungsgruppe A bei Schweißnaht-Ausführungsklassen I A und I B mit einer Neigung nicht steiler als
1:4 abgearbeitet werden, wenn der Überstand (h) größer ist als 3 mm oder
1/4 der kleineren Blechdicke, siehe Bild 11.

Bild 12

B11d 13

Bei Schweißnaht-Ausführungsklassen II A und II B und bei Bauteilen der Ausführungsgruppe C darf der Stoß nach den Bildern 12 oder 13 ausgeführt werden.

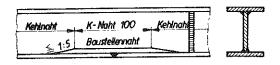
Bei Breitenwechsel ist die Lamelle bei Ausführungsgruppe A im Verhältnis ≤ 1 : 5 abzuschrägen, siehe Bild 14.

B11d 14

6,2,3, Stumpfstoß übereinanderliegender Platten

Mussen ausnahmsweise zwei übereinanderliegende Platten gemeinsam gestoßen werden, so sind sie an den Stirnseiten vorher durch V-Nähte miteinander zu verbinden. Diese V-Nähte sind so auszubilden, daß sie beim Vorbereiten der Stumpfnaht und beim Ausarbeiten der Wurzel nicht restlos entfernt werden, beim Schweißen nicht aufreißen und ihre Wurzeln im Grundriß außerhalb der Nahtoberfläche liegen, siehe Bild 15.

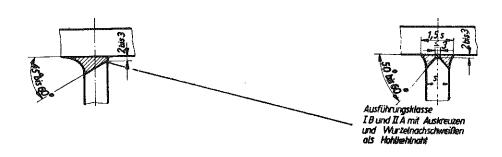
B11d 15


6.3. Kehlnähte

Kehlnähte sind im allgemeinen gleichschenklig und nicht dicker auszuführen als es die Berechnung erfordert, wenn nicht besondere Gründe dagegensprechen, siehe Abschnitt 6,1,3.

Bei Stirn-Kehlnähten ist ungleichschenklige Ausführung, z. B. am Ende der Gurtplatten, vorteilhaft, siehe Abschnitt 6.5.5.3.

Beim Baustellenstoß müssen die in der Werkstatt herzustellenden Halsnähte so weit vor dem Stoß enden, daß sich die Schrumpfungen der Stumpfnähte auf größere Länge auswirken können.


Im Bereich des Untergurtstoßes sind bei Lastspielgruppe A und B und ab 8 mm Stegblechdicke die Halsnähte als K-Nähte auszubilden, um ein fehler-loses Schweißen der Gurt-Stumpfnaht zu ermöglichen, siehe Bild 16.

B11d 16

6.4. HV- und K-Nähte am T-Stoß

Die Nähte sind in Ausführungsgruppe A entsprechend Bild 17a oder 17b auszuführen.

B11d 17a

B11d 17b

6.5. Bauliche Durchbildung der Schweißverbindung

6.5.1. Anordnung der Schweißnähte

Es ist darauf zu achten, daß die Schweißnähte bei der Ausführung gut zugänglich sind.

Lassen sich Überkopf- und Senkrechtschweißnähte nicht vermeiden, sind sie in Lastspielgruppen A und B bei Stumpfnähten I B so zu bearbeiten, daß sie in Wannenlage geschweißten Nähten gleichwertig sind.

Nähte, die wegen erschwerter Zugänglichkeit nicht einwandfrei ausgeführt werden können, sind in der Festigkeitsberechnung als nicht tragend anzunehmen. Dies trifft z. B. für Kehlnähte mit einem kleineren Öffnungswinz kel als 60° zu, sofern nicht durch das angewendete Schweißverfahren das Erreichen des Wurzelpunktes sicher gewährleistet ist. Der Einfluß selcher Nähte auf die Dauer- oder Zeitfestigkeit des Grundwerkstoffes ist zu berücksichtigen.

Anhäufungen von Schweißnähten sind soweit wie möglich zu vermeiden,

Werden Stumpfnähte von Kehlnähten oder K-Nähten gekreuzt, z. B. Halanähte über Gurtstößen, so sind diese Nähte ohne Unterbrechung über den Stoß zu führen, Ausführung des Baustellenstoßes siehe Abschnitt 6.3.

6.5.2. Unterbrochene Nähte

Unterbrochene Nähte dürfen bei besonderer Korrosionsgefahr nicht ausgeführt werden.

Als Halsnähte sind sie nur in Ausführungsgruppe C zulässig.

6.5.3. Hilfsbohrungen für die Montage

Diese Bohrungen sind in den Zeichnungen anzugeben.

Zuschweißen dieser Bohrungen ist nur nach TGL 13 510 zulässig.

6.5.4. Profilstöße

Stumpfstöße von Profilstählen sollen bei Zug- und Biegebeanspruchung vermieden werden, Müssen sie doch ausgeführt werden, se sind sie als Stumpfnähte Ausführungsklasse II B anzusehen. Stahlgüteauswahl nach TGL 12 910.

Stöße mit zusätzlich angeschweißten Decklaschen sind in Lastspielgruppe A und B nicht zulässig, in Lastspielgruppe C im Regelfall zu vermeiden.

6.5.5. Gurtplatten und Bleche

6.5.5.1. Dicks

Bleche und Breitflachstähle von mehr als 50 mm Dicke bei St 38 und mehr als 25 mm Dicke bei St 52 und mehr als 20 mm Dicke bei St 45/60 dürfen nur dann verwendet werden, wenn ihre einwandfreie Verarbeitung durch entsprechende Maßnahmen, z. B. Wärmebehandlung, sichergestellt ist.

Bei St 38 ist TGL 12 910 zu beachten, Die Dicke der Gurtplatte, die unmittelbar mit dem Stegblech geschweißt wird, soll höchstens das Dreifache der Stegdicke betragen, wenn keine besondere Wärmebehandlung erfolgt. Bei Sonderwalzquerschnitten, z. B. mit Stegansatz, und geteilten Gurtplatten ist eine größere Dicke zulässig.

6.5.5.2. Breite

Gedrückte Gurtplatten, bei denen der größte Abstand eines Punktes vom gestützten Rand größer ist als ihre 15fache Dicke, sind auf Stabilität nach TGL 13 503 Bl. 1 zu untersuchen.

Der Kantenüberstand (ü) zweier aufeinanderliegender Gurtplatten ist entsprechend der Schweißtechnologie zu wählen, siehe Bild 18.

Bei nicht versenkten Nähten muß Ü

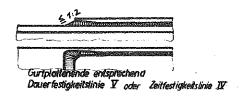
allgemein

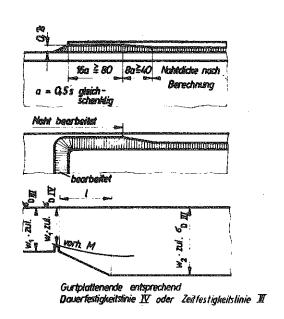
≧ 2 a

und bei Brücken im Verkehrsbau ≧ 2,5 a + 10 mm

sein,

B11d 18

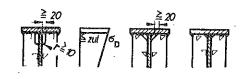

6,5,5,3. Anschluß der Gurtplatten


Die Gurtplatte gilt erst an der Stelle als volltragend, an der ihr Querschnitt durch die Schweißnähte voll angeschlossen ist,

Die Enden zusätzlicher Gurtplatten sind unter Belassung der vollen Breite rechtwinklig abzuschneiden und an ihren Stirnseiten mit kräftigen ungleichschenkligen Kehlnähten anzuschließen. Die Schweißnaht ist ehre abzusetzen herumzuführen. Bei Ausführungsgruppe A sind die Ecken abzurunden eder abzuschrägen, siehe Bild 19.

Diese Ausführung entspricht der Dauerfestigkeitslinie V oder Zeitfestigkeitslinie IV nach Abschnitt 3,2,

Entsprechend Bild 20 bearbeite te Schweißnähte werden in Dauerfestigkeitslinie IV eder Zeitfestigkeitslinie III eingestuft.


B114 20

6.5.6. Eingepaßte Aussteifungen

Aussteifungen müssen nur eingepaßt werden, wenn es statisch erforderlich ist.

Für eingepaßte Aussteifungen gilt folgendes:

Wenn Aussteifungen an Gurte angeschweißt werden, muß die Abminderung der Ermüdungsfestigkeit bei Lastspielgruppe A und B berücksichtigt werden, siehe Tabelle 7. Die Kehlnahtenden sollen um die Aussteifung herumgeschweißt werden, siehe Bild 21.

Nicht an den Gurt angeschweißte Ausstelfungen müssen scharf eingepaßt sein, unter Umständen durch eingepaßte Plättchen von mindestens der doppelten Dicke der Ausstelfung, siehe Bild 22.

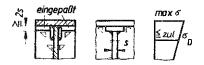
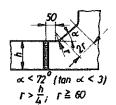
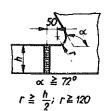


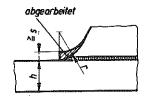
Bild 22

6.5.7. Knotenbleche


Knotenbleche und ihre Anschlüsse an die Gurte sind nach Abschnitt 6.5.7.1. bis 6.5.7.4. in die einzelnen Dauer- oder Zeitfestigkeitslinien einzustufen.

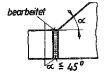

Andere als die dort angegebenen Lösungen müssen von der zuständigen Prüfstelle zugelassen und entsprechend eingestuft werden.

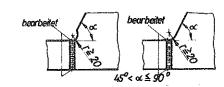
Bei aufgesetzten Knotenblechen müssen durch besondere Prüfungen im Bereich des Anschlusses Doppelungen im Blech, auf das aufgesetzt wird, ausgeschlossen sein. Prüfbereich und zverfahren müssen auf der Zeichnung angegeben werden. Werden Verbandsstäbe einer niedrigen Lastspielgruppe, z. B. C, an ein Bauteil einer höheren Lastspielgruppe, z. B. A, angeschlossen, so brauchen ihre Anschlüsse an das Knotenblech nur der niedrigeren Lastspielgruppe zu genügen, das Knotenblech und sein Anschluß an das andere Bauteil muß aber der höheren Lastspielgruppe entsprechen.


6.5.7.1. Eingebundene Knotenbleche entsprechend Dauerfestigkeitslinie III oder Zeitfestigkeitslinie II

Die Bleche sind mit Stumpfnähten in Ausführungsklasse I A in den Gurt einzuschweißen und entsprechend Bild 23 oder 24 zu gestalten. Die Übergänge und Ausrundungen sind sorgfältig zu bearbeiten.

B11d 23

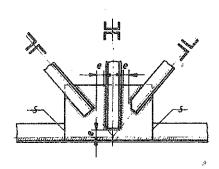

B11d 25


6.5.7.2. Aufgesetzte Knotenbleche entsprechend Dauerfestigkeitslinie V oder Zeitfestigkeitalinie IV

Die Ausrundungshalbmesser sind nach Bild 23 oder 24 zu wählen. Die Übergänge am Knotenblechrand sind nach Bild 25 zu bearbeiten, webei mindestens der Betrag s gleich Dicke des Knotenbleches abzuarbeiten ist.

6.5.7.3. Eingebundene Knotenbleche entsprechend Dauerfestigkeitslinie VI oder Zeitfestigkeitslinie V

Die Stumpfnähte - mindestens Ausführungsklasse II A - dürfen keine Endkrater haben und müssen entsprechend Bild 26 oder 27 bearbeitet sein.



B11d 26

Bild 27

Bei einem Winkel $\alpha>45^{\circ}$, siehe Bild 27, muß eine Kehle ausgearbeitet werden mit $r \ge 20$ mm, um die Bearbeitung des Nahtendes zu ermöglichen.

Bei einem Winkel $\alpha > 90^{\circ}$ sind die Bleche nach Abschnitt 6.5.7.1. jedoch mit $r \ge 60$ mm, zu gestalten.

B11d 28

6.5.7.4. Knotenbleche entaprechend Dauerfestigkeitalinie VII oder Zeitfestigkeitalinie VI

Die Knotenbleche dürfen in den Gurt eingesetzt eder aufgesetzt werden. Die Füllstäbe dürfen mit Kehlnähten an die Knotenbleche angeschweißt werden.

Die Schweißnähte untereinander sollen einen Abstand e \geq 5 a (a ist die Kehlnahtdicke) haben, siehe Bild 28.

6.6. Quernähte an gedrückten Bauteilen

Abweichend von der Einstufung nach Tabelle 7 darf für Bauteile aus St 38 im Druck-Schwellbereich der Ermüdungsfestigkeitsnachweis entfallen, wenn auf das Bauteil Winkelstähle (Verbandstäbe), Knaggen oder ähnliches durch Kehlnähte aufgeschweißt sind. Dasselbe gilt für den Einfluß von Ausstei-fungsrippen, die mit unbearbeiteten Kehl- oder K-Nähten als Quernähte angeschweißt sind.

Die Knaggen dürfen nicht dicker als der Gurt und in Träger-Längsrichtung nicht länger als die 10fache Gurtdicke sein. Endigende Kehlnähte müssen mindestens 30° Neigung gegen die Träger-Längsachse håben. Einbrandkerben und Schweißgut-Anhäufungen sind zu vermeiden. Die Zug-Eigenspannungen in-folge des Schweißens müssen möglichst gering gehalten werden.

Dieser Abschnitt gilt nicht für Brücken im Verkehrsbau,

6.7. Beanspruchung rechtwinklig zur Walzebene

Es muß gewährleistet sein, daß rechtwinklig zu ihrer Oberfläche auf Zug hoch beenspruchte Bauteile - z. B. in Kreuzstößen - keine inneren Fehler wie Deppelungen und anderes aufweisen. Die Forderung nach entsprechender Prüfung ist auf der Ausführungszeichnung zu vermerken. Bei St 45/60 ist Material aus Elektrochargen zu verwenden.

Die zulässige Spannung rechtwinklig zur Walzebene beträgt:

1.0 zul o bei St 38 und St 30/45

0.8 zul ø bei St 52 und St 45/60

7. ZUSTÄNDIGE PRÜFSTELLEN

Zustänlige Prüfstellen - Aufsichts- und Überwachungsorgane der DDR - sind Staatliche Bauaufsicht, Abnahmeamt der Deutschen Reichsbahn, Technische Überwachung, Prüfstelle für Tagebaugroßgeräte und andere nichtstationäre Tagebauausrüstungen, Prüfstelle für Lastaufnahmemittel, Oberste Bergbehörde, Deutsche Schiffsrevision und -klassifikation sowie Amt für Standardisierung, Meßwesen und Warenprüfung.

Hinweise

Ersatz für TGL 13 500 Ausg. 5.65

Änderungen gegenüber Ausg. 5.65:

Bezeichnung "Lastspielgruppe" für die Berechnung und "Ausführungsgruppe" für Konstruktion und Fertigung eingeführt.

Einstufung in Ausführungsgruppe C auch bei dynamischer Beanspruchung ermöglicht.

Statischer Spannungsnachweis für mehracheigen Spannungszustand geändert.

Alle Zahlenwerte für Stabilitätsnachweis gestrichen, weil in TGL 13 503 Bl. 1 und 2 übernommen.

Hinweis auf Spannungstheorie II. Ordnung beim Ermüdungsfestigkeitsnachweis aufgenommen.

Zulässige Spannungen für Stumpfnähte Ausführungsklasse II A und II B erhöht.

Zulässige Schubspannungen für Stumpfnähte erhöht.

Zulässige Spannungen für Kehlnähte teilweise erhöht,

Zulässige Spannungen für Kehlnähte Ausführungsklasse III aufgenommen.

In Tabelle 7 K-Naht I A gestrichen, Einschnittige Niete und Paßschrauben in Linie V bzw. IV eingestuft. Seitlich angesetztes ausgerundetes Knotenblech in Linie V bzw. IV eingestuft.

Zusammenwirken verschiedener Nahtarten verändert,

Im Abschnitt 6.1.3. Festlegungen über tieferen Einbrand gestrichen, da sie in TGL 13 510 gehören.

Zulässige rechnerische Schweißnahtlänge bei Stabanschlüssen in Lastspielgruppe C auf 100 a vergrößert.

HV-Naht am Kreuzstoß aufgenommen.

Fastlagung über Druckgurte mit Quernähten aufgenommen.

Redaktionell Uberarbeitet,

Stahlbau; Stabilitätsfälle; Berechnung nach zulässigen Spannungen; Allgemeine Grundlagen

siehe TGL 13 503 Bl.1

-; -; -; Erläuterungen und zusätzliche Forderungen

siehe TGL 13 503 Bl.2

Stahlbau; Stahlleichtbau; Stahlrohrtragwerke; Berechnung, bauliche Durchbildung, Herstellung, Abnahme

siehe TGL 13 501 Bl.1

-; -; Dünnblechtragwerke; Berechnung, bauliche Durchbildung, Herstellung, Abnahme

siehe TGL 13 501 B1,2

Stahlbau, Gleitfeste Schraubverbindungen, Berechnung und bauliche Durchbildung

siehe TGL 13 502

Stahlbau, Stahltragwerke, Herstellung und Abnahme

siehe TGL 13 510

Allgemeine Baustähle, Stahlmarken, Allgemeine technische Forderungen

siehe TGL 7960

Werkstoffauswahl für Konstruktionen aus allgemeinen Baustählen

siehe TGL 12 910

Ausführungsklassen für Schweißverbindungen, Schweißen von Stahl

siehe TGL 11 776 Bl.1

(+)

Sonderhochbaustähle; Technische Lieferbedingungen

siehe TGL 101-014

Berechnungsgrundlagen für stählerne Eisenbahnbrücken

siehe DV 804

Vorschriften für geschweißte Eisen-

siehe DV 848

Vorschriften für geschweißte Eisenbahnbrücken

Gegenüberstellung zwischen GOST- und TGL-Stählen siehe "Stahlmarkenverzeichnis nach TGL einschließlich Gegenüberstellung vergleichbarer GOST-Standards" in Mitteilungen Nr. 95 der Stahlberatungsstelle.

Beispiel für den Dauer- oder Zeitfestigkeitsnachweis von durch Radlasten beanspruchten Halsnähten (Lasteintragung am Obergurt):

Bei Halsnaht als Kehlnaht eind nachzuweisen:

die Einzelspannungen nach Gleichung (6) aus der Biegung des Trägers:

 $\sigma_y \le zul \sigma_{Dy}$ nach Dauerfestigkeitslinie III/1 oder Zeitfestigkeitslinie II/1

aus der Radlast

 $\sigma_x \leq zul \sigma_{Dx}$ nach Linie VIII/2 oder X/2

Längsschubspannung

 $\tau_{xy} \le zul \tau_{Dxy}$ nach Linie IX oder XI

der ebene Spannungszustand nach Gleichung (7)

mit zul $\sigma_{\rm Dy}$ nach Linie III/1 oder II/1 zul $\sigma_{\rm Dx}$ nach Linie VII/4 oder VI/4 und

zul σ^*_{D} nach Linie III/3 oder II/3

Zusätzlich ist das durch die Halsnaht beeinflußte Stegblech nachzuweisen, und zwar

die Einzelspannung nach Gleichung (6) aus der Radlast $\sigma_{\rm X} \le {\rm zul}\,\sigma_{\rm DX}$ nach Linie IV/6 oder III/6

Längsschubspannung

 $\tau_{xy} \leq zul^{\tau}_{Dxy}$ nach Linie IX oder XI

der ebene Spannungszustand nach Gleichung (7)

mit zul $\sigma_{\rm Dy}$ nach Linie III/1 oder II/1 zul $\sigma_{\rm Dx}$ nach Linie IV/6 oder III/6 und zul $\sigma^{*}_{\rm D}$ nach Linie III/3 oder II/3 (+)

zul $\sigma_{\rm DX}$ nach Linie IV/6 oder III/6 gilt nur für Druck, für Zug ist zul $\sigma_{\rm DX}$ nach Linie VII/4 oder VI/4 maßgebend,

Bei Halsnaht als K- oder HV-Naht, z. B. Ausführungsklasse II A sind nachzuweisen:

die Einzelspannungen nach Gleichung (6) aus der Biegung des Trägers:

 $\sigma_y \leq zul \sigma_{Dy}$ nach Linie III/1 oder II/1

aus der Radlast

 $\sigma_x \leq zul \sigma_{Dx}$ nach Linie VI/3 oder V/3

Längsschubspannung

 $\tau_{XY} \le zul \tau_{DXY}$ nach Linie IX oder XI

der ebene Spannungszustand nach Gleichung (7) mit zul σ_{Dy} nach Linie III/1 oder II/1 zul σ_{Dx} nach Linie VI/3 oder V/3 und

zul σ^*_D nach Linie III/3 oder II/3 (+)

Erläuterungen:

Der Begriff "Grenzlastfall" hat keine Beziehung zum Berechnungsverfahren nach Grenzzuständen.

Zu Tabelle 3:

Die zulässige Schubspannung ist auf Grund von Versuchsergebnissen bei Stumpfnähten auf zul $\sigma/\sqrt{2}$ erhöht worden; plastische Verformung tritt bei den Schweißnähten praktisch nicht in Erscheinung. Beim Grundwerkstoff ist wegen der dort auftretenden plastischen Verformung zul $\tau=\sigma/\sqrt{3}$ belassen worden. Bei Kehlnähten ist die zulässige Spannung für St 38 und St 52 auf Grund von Versuchen erhöht worden. Für St 45/60 ist keine Erhöhung gerechtfertigt.

Zu Tabelle 6:

Die Linien für zul o d und zul t d werden nicht mehr bei der statisch zulässigen Spannung im Grenzlastfall H abgeschnitten, weil bei der Neufassung einiger Standards (TGL 13 450, TGL 13 470, TGL 13 471) vorgesehen ist,
daß die im Grenzlastfall H zulässige Spannung entsprechend dem Anteil der
ständigen Lasten und der Verkehrslasten zwischen den Werten für Grenzlastfall H und Hz interpeliert werden können. Wenn nicht offensichtlich
faststeht, welcher Nachweis maßgebend ist, muß sowohl der statische Spannungsnachweis als auch der Ermüdungsfestigkeitsnachweis geführt werden,
Unter Umständen sind für die beiden Nachweise unterschiedliche Lastannahmen maßgebend, z. B. für statischen Nachweis zwei Krane, für Dauerfestigkeitsnachweis ein Kran,

Zu Abschnitt 1.2.

Sofern keine genaueren Werte bekannt sind, kann der Elastizitätsmodul für Abspannseile wie folgt angenommen werden:

Art des Abspannseiles

Parallel gebundelt

 $E = 2 000 000 \text{ kp/cm}^2$

Gedrallt aus Runddraht mit Stahlseele

 $E = 1500000 \text{ kp/cm}^2$

Gedrallt aus Runddraht mit Fasereinlage E = 1 200 000 kp/cm²

Für Kranseile kann E = 1 200 000 kp/cm2 angenommen werden.

Zu Abschnitt 4.6.

Die Einstufung in die Dauer- oder Zeitfestigkeitslinien erfolgt entsprechend der Kenstruktionsform der Anschweißung. Wenn die Anschweißung vollständig wieder beseitigt wird, ist in Linie V (A) oder IV (B) einzustufen. Bei einwandfreiem Beseitigen ohne Beschädigung der Bauteile und blechebenem Bearbeiten der Nähte ist Einstufung in Linie II (A) oder I (B) möglich.